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Abstract  

This paper uses an ant system (AS) meta-heuristic optimization method to solve the problem of 
structure optimization of  series-parallel production systems. In the considered problem, redundant 
machines (elements) and buffers in process are included in order to attain a desirable level of 
reliability. A procedure which determines the minimal cost system configuration is proposed. In this 
procedure, multiple choices of producing machines and buffers are allowed from a list of product 
available in the market. The elements of the system are characterized by their cost, estimated average 
up and down times, productivity rates and buffers capacities. The reliability is defined as the ability to 
satisfy the consumer demand which is represented as a piecewise cumulative load curve. The proposed 
meta-heuristic is used as an optimization technique to seek for the optimal design configuration. The 
advantage of the proposed AS approach is that allows machines and buffers with different parameters 
to be allocated.  

Keywords: Manufacturing system, Buffers, Meta-heuristic Optimization, Ant algorithm, Reliability 
evaluation, Optimal design  

1 INTRODUCTION  

The design of manufacturing systems is of great economic importance, because of the 
need to face requirements for increasing productivity and reducing cost. One of the main 
important problems in the design of manufacturing systems is structure optimization, and the 
natural objective function of this problem is cost minimization subject to requirement of 
meeting the demand with the desired system reliability level. 

In manufacturing process, production chain is prone to productivity fluctuation. As the 
mean to smooth out this variation and to increase system reliability, a temporary storage 
between the stages of manufacturing process is often introduced. In this case the determination of 
the buffers size and structure of producing machines affect principally the total cost of system and its 
availability.  

Indeed, a great part of analytical solutions for the structure optimization problem have 
been addressed in many studies some of which can be found in [1-3].  It is interesting to note 
that some investigations found solutions of optimal size of the buffers storage and the optimal 
stock to minimize the total inventory cost. In the example of a queuing system an approximate 
solution of a buffers design problem is presented [3] to determine the smallest buffer capacity. 
This case does not consider a reliability and structure upstream and downstream components 
of the system. On the contrary, in [4-5] the reliability constraints are considered and the 
design of zero-buffer production system is examined. The objective is to minimize the total 
cost of machines while providing the required level of reliability. Algorithms presented in 
these works are of great help to designers of production systems using machines with 
different productivity, reliability and cost. 
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In this paper, an optimal production system design problem is considered, and an AS 
algorithm is proposed. In our case the system studied includes process intermediate buffers 
and has series-parallel configuration. The AS is used to find the optimal design system by 
choosing the appropriate technology from a list of available products in market. Several 
technologies belong to a variety of available products. Each technology is characterized by its 
cost, productivity and estimated average up and down times.  Our objective is to select the 
optimal combination of machines used in parallel and intermediate buffers for all 
components. This has to correspond to the minimal total cost with regard to the selected level 
of the system reliability. The AS algorithm is inspired from nature like other meta-heuristic 
ones, e.g.: simulated annealing, genetic algorithm, evolutionary strategy, and tabu search. The 
AS allows each component and intermediate buffer to contain elements with different 
technologies. In this work, to evaluate the reliability for production system design, times to 
failures and repairs are considered as exponentially distributed. The following assumptions 
are considered in this study: 

 

1. We consider the probability of simultaneous unavailability of machines is negligible. 

2. We assume that the convoying time between machines is negligible compared with the 
other characteristic time scales. 

3. All buffers are full when they have to be used to compensate the system productivity 
deficit. 

Organization of the remaining part of this paper is as follows. Section 2 of the paper 
consists of a general description of the model used and a formulation of the problem. In 
section 3, we describe the computation method of system unsatisfied demand probability. 
Section 4 describes the basic AS approach and its adaptation to the problem. In section 5, an 
illustrative example is represented. Conclusions are drawn in section 6. 

2 DESCRIPTION OF SYSTEM MODEL AND PROBLEM FORMULATION 

A system design considered in our work, contain N  components connected in series 
arrangement as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Series-Parallel Manufacturing Systems with Buffers 
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Each component of type Ni ...,,1=  contains a number of producing machines belonging to 
different technologies  put in parallel. For some technical constraints, each component of type 
i  contains no more than maxK  machines connected in parallel. A multi-choice of machines 
and technologies will be adopted for each given system component. Each technology 
available in market has different costs, productivities and estimated average up and down 
times according to their technology. A vector of parameters 

iiii vvvv DUEC ,,,  can be 
specified for each technology ),( jiv  of the component of type i . The structure of system 
component i  is defined by the version numbers ),( jiv  of parallel elements for each 
component. These numbers can vary in the range ( ) iVjiv ≤≤ ,0  where iV  is the total number 
of technologies available for element of type i  and the number of parallel machines is ik  

max1 Kki ≤≤ , where maxK  is the maximum allowed number of parallel machines of type i . 

Each component m , 11 −≤≤ Nm  can also contain a buffer chosen from the list of available 
buffers. Note that the buffers of technology f  differ by their capacity fV  and cost B

fC . A 
vector { })(mff = , where mFmf ≤≤ )(0  defines technologies of buffers chosen for each 
component. Here mF  is the total number of different buffers technologies available for mth 
component. ( ) 0=mf  means that  no buffer is installed at component m.  For a given set of 
vectors nvvvf ,,,, 21 K  the total cost of the system can be calculated as: 
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With the above assumption 1, the entire system reliability estimation can be based on 
consideration of unavailability of single machines. Therefore, the different system states that 
contribute to the reduction of the total productivity of a system are equal to the total number 
of machines in system. All the possible states can be defined as: 
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Each state corresponds to the unavailability of machine j  of component i  and 
characterized by the total system productivity ),( jiEtot  and by the probability )(dpij  that 
demand d  will not be satisfied, due to the unavailability of this machine. 

In order to describe the production system facing to a variable demand, we consider the 
time period of demand is a set of  M  intervals, with duration iT  )...,,1( Mi = . Each demand 
level  id  has duration iT . The probability iq  of demand id  can be computed as: 
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The demand is represented by the vector { }mdd = and the corresponding probability vector by 
{ }mqq =  ( )Mm pp1 . Both vectors define the cumulative demand curve, which is usually 

known for every system. 

To improve the accuracy of the results, the boundary effects of elements being unavailable 
between two adjacent demand intervals are considered. For each element ),( jiv the downtime 

is divided into L equal intervals with duration ( )

L
D ji ,=θ . Consequently, a new cumulative 

demand  curve is obtained for each element ),( jiv .This curve, as shown in Fig.(2), is defined 
by the new demand and corresponding probability of demand vectors d ={d(m , s)}and  

q ={q(m , s)}, ( )Mm ≤≤1  and ( )Ls ≤≤1 . 

The elements of the d and q vectors are calculated as 
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Note, that in production systems with variable demand we assume that the overall probability 
that the demand will not be met is used as a measure of system unreliability; like in electric 
power system, Loss of Load Probability (LOLP) is often estimated [6-7]. To compute this 
index, first the total unsatisfied demand probability should be calculated as 
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The measure of reliability of entire system is defined by R  index, given by the expression 
udPR −=1 . This index will be compared and must not be less than some preliminarily 

specified level 0R . 

The problem of optimal production system design can be formulated as follow: 
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find the system configuration nvvvf ...,,,, 21  that provides the minimum total cost under 
reliability constraint. This problem can be stated as: 
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3 DETERMINATION OF SYSTEM UNSATISFIED DEMAND PROBABILITY 

Let consider the production manufacturing system with its given structure ( nvvvf ...,,,, 21 ). 
Each machine j  of component i , the technology  ),( jiv  is chosen, and for each component i  
the technology of buffer )(if   is chosen. 

Under the assumption 1, we consider each component separately. Therefore, if one of 
elements of component i  is unavailable at any moment, the whole capacity of the rest of 
components have their maximal productivity. In this case only the component with an 
unavailable machine can become the bottleneck of the system and, indeed, only the influence 
of this component on the entire system productivity should be estimated. The latter should be 
calculated as flows, let the i th component has total productivity: 
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Suppose that element n  of this component is unavailable, the potential productivity of the 
entire system is reduced to ),( niEe vi − . The productivity deficit in component of type i , due 
to the unavailability of machine n, depends on the system demand d  and is defined as 
follows: 

 

),()( niEedd viin +−=ε                                                (9) 

 

In the case when 0)( ≤dinε , the machine unavailability  does not cause the entire system 
productivity reduction and the corresponding probability 0)( =dpin . On the contrary, if the 
productivity deficit exists ( 0)( >dinε ), this situation can be compensated by unloading 
downstream located buffers. If the downtime of the unavailable machine is ),( nivD ,  the time 
of buffers unloading can be calculated as: 
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where  ∑
−

=

1

)(

N

ij
jfV  represents the total capacity of downstream located buffers. 

Due to the unavailability of the machine n , the probability that demand d  will not be 
satisfied can be calculated as follows: 
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In the end, we apply this equation for all the demand levels and all system machines, after 
using the expression (6) we can obtain udP  for entire system. 

 

4 THE ANT COLONY OPTIMIZATION (ACO) APPROACH 

Ants lay down an aromatic substance, known as pheromone, in some quantity in their way 
to food. The pheromone quantity depends on the length of the path and the quality of the 
discovered food source. An ant chooses a specific path in correlation with the intensity of the 
pheromone. The pheromone trail evaporates over time if no more pheromone is laid down. 
Other ants can observe the pheromone trail and are attracted to follow it. Thus, the path will 
be marked again and will therefore attract more ants. The pheromone trail on paths leading to 
rich food sources close to the nest will be more frequented and will therefore grow faster. In 
this way, the best solution has more intensive pheromone and higher probability to be chosen. 
The described behaviour of real ant colonies can be used to solve combinatorial optimization 
problems by simulation: artificial ants searching the solution space simulate real ants 
searching their environment. The objective values correspond to the quality of the food 
sources. The ACO approach associates pheromone trails to features of the solutions of a 
combinatorial optimization problem, which can be seen as a kind of adaptive memory of the 
previous solutions. In addition, the artificial ants are equipped with a local heuristic function 
to guide their search through the set of feasible solutions. Solutions are iteratively constructed 
in a randomized heuristic fashion biased by the pheromone trails left by the previous ants. 
The pheromone trails are updated after the construction of a solution, enforcing that the best 
features will have a more intensive pheromone. 
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4.1  Applying the ACO Meta-Heuristics to Structure Optimisation Problem (SOP)  

To apply the ACO meta-heuristics to a combinatorial optimization problem, it is convenient 
to represent the problem by a graph G = (ς, Λ), where ς are the nodes and Λ is the set of 
edges. To represent the SOP as such a graph, the set of nodes ς is given by components and 
elements, and edges connecting each component to its available elements. Some nodes are 
added to represent positions where additional component was not used. As in [8-10], these 
nodes are called blank nodes and have attributes of zero. The obtained graph is partially 
connected. Ants cooperate by using indirect form of communication mediated by pheromone 
they deposit on the edges of the graph G while building solutions. 

Informally, the algorithm works as follows: y ants are initially positioned on node 
representing a component. Each ant represents one possible structure of the entire system. 
This structure is represented by Ki elements in parallel for N different components. The Ki 
elements can be chosen in any combination from the Vi available type of elements. Each ant 
builds a feasible solution (called a tour) to the SOP by repeatedly applying a stochastic greedy 
rule, i.e., the state transition rule. While constructing its solution, an ant also modifies the 
amount of pheromone on the visited edges by applying the local updating rule. Once all ants 
have terminated their tour, the amount of pheromone on edges is modified again (by applying 
the global updating rule). Ants are guided, in building their tours, by both heuristic 
information (they prefer to choose "less expensive" edges), and by pheromone information. 
Naturally, an edge with a high amount of pheromone is a very desirable choice. The 
pheromone updating rules are designed so that they tend to give more pheromone to edges 
which should be visited by ants. 

 

4.2  State Transition Rule 

In the above algorithm, at each step of the construction process, ants use problem-specific 
heuristic information (denoted by ηij) and pheromone trails (denoted by τij) to select Ki 
elements for each sub-system. An ant positioned on node i (representing a system component 
i) chooses the element ( )jiv ,  by applying the rule given by: 
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and V(i,j)  is a random element selected according to the probability distribution given by: 
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α and β are parameters that control the relative weight of the pheromone (τij) and the local 
heuristics (ηij), respectively; ACi is the set of available element choices for the system 
component i, q is a random number uniformly distributed in [0,1]; and qo is a parameter 
(0≤qo≤1). The parameter qo determines the relative importance of exploitation versus 
exploration: every time an ant in node i has to choose an element j, it samples a random 
number 0≤q≤1. If q≤qo then the best edge, according to equation (12), is chosen 
(exploitation), otherwise an edge is chosen according to equation (13) (biased exploration). 
The state transition rule resulting from theses equations is a pseudo-random proportional 
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rule. The heuristic information used is ηij= 1/ (1+cij) where cij represents the associated cost 
of element j for component i. In equation (13) we multiply the pheromone on edges by the 
corresponding heuristic value. In this way we favour the choice of edges which are weighted 
with smaller costs and which have a greater amount of pheromone. That is, elements with 
smaller cost have greater probability to be selected. 

 

4.3  Local Updating Rule 

While building a solution of the problem of structure optimisation, ants choose elements by 
visiting edges of the graph G, and change their pheromone level by applying the following 
local updating rule: 

( ) ( ) o
old

jiv
new

jiv ρτ+τρ−→τ ,, )1(                                         (14) 
 

where ρ is a coefficient such that (1-ρ) represents the evaporation of trail; and τo is the initial 
value of trail intensities. 

The application of the local updating rule, while edges are visited by ants, has the effect of 
lowering the pheromone on visited edges. The pheromone reduction is small but sufficient to 
lower the attractiveness (or desirability) of precedent edge. This favours the exploration of 
edges not yet visited, since the visited edges will be chosen with a lower probability by the 
other ants in the remaining steps of an iteration of the algorithm. Thus, by discouraging the 
next ant from choosing the same element during the same cycle, ants do not converge to a 
common solution and premature convergence is avoided. 
 

4.4 Global Updating Rule 

Once all ants have built a complete system, pheromone trails are updated. Only the globally 
best ant (i.e., the ant which constructed the best design solution during a complete cycle) is 
allowed to deposit pheromone. A quantity of pheromone ∆τ  is deposited on each edge that the 
best ant has used. The quantity ∆τ  is given by (1/ TCbest),where TCbest  is the total cost of the 
designed feasible solution constructed by the best ant. Therefore, the global updating rule is:  

   ( ) ( ) ( )jivjiv
new

jiv ,,, )1( ττρτ ∆+−=                                     (15) 
 
where 10 pp ρ  is the pheromone decay parameter representing the evaporation of trail. Global 
updating is intended to allocate a greater amount of pheromone to less expensive design 
solution. Equation (15) dictates that only those edges belonging to the globally best solution 
will receive reinforcement. The meta-heuristics described above has been applied 
successfully to a power station coal transportation system which supplies a boiler. This 
example was taken from reference [8] where a genetic algorithm is used to solve the SOP. 
 

4.5 Overview of The Ant Algorithm 

STEP 1. Initialisation 

Set: NC=0   /*NC : Cycle counter*/ 

For every combination (i,j)  /*i: Sub-System index  j: element index*/ 

Set an initial value  ( ) ( ) 0, 0 ττ =jiv  and ∆τ=0  
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End 

For every combination (i,j) of available buffers  

Set an initial value ( ) BB
ij 00 ττ = and 0=∆ Bτ  

End 
 

STEP 2. System selection and system cost computation 

 For k:=1 to y   /*y: number of ants*/ 

 For i:=1 to N  /*N: number of sub-systems*/ 

 For j:=1 to kmax /*kmax: maximum number of parallel components allowed in sub-
systems */ 

Choose a component V(i,j) with transition probability given by equations (12), (13) /* 
This selection can return blanks : No component selected*/ 

Set  Ce:=Ce+CV (i,j)  /* Ce : cost of selected elements*/ 

Local pheromone updating of elements according to equation (14) applied to elements 
selection 

End 

Set: ki := kmax-number of blanks /*ki: number of elements in sub-system i*/   

End 

For i:=1 to N -1  

Choose a buffer Vf(i) with transition probability given by equations (12), (13) (application 
for buffers) /* This selection can return blanks : No buffer installed at subsystem i */ 

Set Cb:=Cb+CVf(i)  /*Cb: cost of buffers; CVf(i) :cost of selected buffer of version f */  

Local pheromone updating of selected buffers according to equation (14) applied to 
buffers 

 End 

 Compute the system cost  for each ant 

 Set be
K
sys CCC +=   /* K

sysC  : total cost of system selected  by kth  ant*/                                                     

 

STEP 3. Availability computation 

 Set Pu:= 0 /*Pu: total unsatisfied demand*/ 

  For i:=1 to n  

  For j:=1 to ki 

Compute demand level curve for each element using equations (4) and (5) 

   For m:=1 to M 

   For s:=1 to L 

Compute unsatisfied  demand  PuV (i, j)   for elements v(i,j) for all demand levels (m,s) 
according to equations   (10), (11) and (6)                                                                                                 

        End, End 
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        Set: Pu=Pu + Pu V (i , j) 

        End, End 

        Compute the system availability for each ant 

         Rk =1-Pu  

         If Rk < R0  

         Then Set W: = Wp  /*Wp: large penalty  cost*/  

          Else Set W: = 0  

          Set WCC K
sys

K
sys +=  

         End 
          Set: ( )

min
K
sysC

G=∆τ /* G: constant; ( )
min

K
sysC : minimum cost in cycle (best ant)*/ 

          Set ( ) ( )
⎩
⎨
⎧ ∈∆=∆

otherwise

solutionbestjiVelementifjiv

K

K

,0

,,, ττ
  

  Update the best solution according to equation (15) 

  /* this global updating includes elements and buffers*/ 
 

  STEP 4.  Set: Nc:=Nc+1 

  For each combination (i, j), set ∆τ =0 
   

  STEP 5.  If {NC<NCmax} and { not stagnation behaviour}                                           

  Then  Go To Step 2. 

  Else Print and save the best feasible solution. 

  End  

  Stop. 

 

5 ILLUSTRATIVE EXAMPLE 

5.1  Description Of The System To Be Optimized  

The power station coal transportation system which supplies the boilers is designed with five 
basic components as depicted in Figure 3. Figure 2 shows the detailed process of the power 
station coal transportation. 

The process of coal transportation is as follows: The coal is loaded from the bin to the 
primary conveyor (Conveyor.1) by the primary feeder (Feeder.1). Then the coal is transported 
through the conveyor 1 to the Stacker-reclaimer, where it is lifted up to the burner level. The 
secondary feeder (Feeder.2) loads the secondary conveyor (Conveyor.2) which supplies the 
burner feeding system of the boiler. Each element of the system is considered as unit with 
total failures. 

To provide a desired total availability, the system should be constructed by the choice among 
several products available on the market. The characteristics for each type of components are 
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presented in Table 1. The latter shows for each component (Component i) the corresponding 
available versions, their capacities Σ, up and down times and their costs C. Without loss of 
generality both the equipment capacity and the demand levels can be measured as a 
percentage of the maximum boiler capacity (Demand) at each interval as shown in Table 2. 
Interval duration of load can be measured as a fraction (percentages %) of the total operation 
time (T).   

 

 
 

 

 

 

 
 
 

 
 
 
 
 
 
 

5.2 Discussion of Obtained Result  

Table 4 shows the optimal or near optimal solutions obtained by the suggested Ant colony 
algorithm for different reliability constraints specified by the index R0 in the range varying 
from 0.92 to 0.99. Table 4 also shows the calculated reliability index R, the cost of the system 
Csys and its structure represented by a vector of element version numbers and a vector of 
buffer numbers for each component. In order to estimate the effects of introducing buffers on 
the system cost and reliability, optimal solutions of structures without buffers under similar 
reliability constraints are included in the same table. A comparison of these results shows that 
with buffers the same reliability level is achieved with lower cost.  

The results in Table 4 enable the decision maker to evaluate the reliability-cost trade-off, e.g. 
less than 5% of the investment is needed to improve the reliability level from 92% to 96% 
while 25% of investment is required to increase this level from 96% to 99%. This will 
obviously make the decision making process much easier. 

The parameters considered here are those that affect directly the computation of the formulas 
used in the algorithm (α, β and ρ). We tested several values for each parameter, all the others 
being constant. The values tested were: α ∈ {0, 0.5, 1, 2}, β∈ {0.5, 1, 2, 5, 10} and  
ρ∈{0.3,0.5, 0.7, 0.9}. The best values for these parameters that converge rapidly to optimal 
solutions were: α =1, β=2 and ρ∈ (0.5,0.7). 

  The program was run on a 2.4 Ghz processor with an ant colony of 50 agents and a 
maximum of 100 cycles. The running time required to obtain the optimal or near optimal 
solution did not exceed 95s and 83 cycles was the maximum number of cycles to reach the 
best solution. 

 

 

 

Figure 2: Detailed Power Coal Station System 

 
Figure 3: Structure Synoptic of a Power System 



                            M.Allali et. al. / Journal of Cybernetics and Informatics  6  (2006)                 25-38                             36 

 
Table 1: Data Example 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Data of Cumulative Load-Demand Curve 
 

dm (%) 100 80 40 70 

qm (h) 0.31 0.19 0.22 0.28 

 

 

 

 

Comp# Vers# Capacity 
Σ(%) 

Uptime   
U(h) 

Downtime
D(h) 

Cost  
C 

 

 

 

1 

1 

2 

3 

4 

5 

6 

7 

120 

100 

85 

85 

48 

31 

26 

755.0 

841.0 

710.0 

705.0 

720.0 

380.0 

677.0 

16.0 

19.0 

20.0 

15.0 

12.0 

18.0 

12.0 

 

0.590 

0.535 

0.470 

0.420 

0.400 

0.180 

0.220 

 

 

2 

1 

2 

3 

4 

5 

100 

92 

53 

28 

21 

1200.0 

1080.0 

880.0 

1140.0 

940.0 

11.0 

8.0 

9.0 

5.0 

10.0 

0.205 

0.189 

0.091 

0.056 

0.042 

 

 

3 

1 

2 

3 

4 

100 

60 

40 

20 

70.0 

73.0 

66.0 

70.5 

2.0 

2.0 

2.0 

1.5 

7.525 

4.720 

3.590 

2.420 

 

 

 

 

4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

115 

100 

91 

72 

72 

72 

55 

25 

25 

780.0 

895.0 

643.0 

956.0 

845.0 

776.0 

739.0 

658.0 

713.0 

17.0 

15.0 

12.0 

16.0 

19.0 

14.0 

12.0 

17.0 

19.0 

0.180 

0.160 

0.150 

0.121 

0.102 

0.096 

0.071 

0.049 

0.044 

 

 

5 

1 

2 

3 

4 

100 

60 

40 

20 

530.0 

435.0 

485.0 

385.0 

13.0 

8.0 

12.0 

10.0 

7.525 

4.720 

3.590 

2.420 
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Table 4: Parameters of Optimal Solutions for Different Reliability Requirements 

 

 

 

 

 

TABLE 3 :PARAMETERS OF AVAILABLE BUFFERS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R0  With  buffers   NO  buffers   

 R Csys Component Elements Buffers R Csys component Elements

0.92 0.921 16.442 1 

2 

3 

4 

5 

2 

3,3 

1 

2 

2,3 

--- 

--- 

--- 

3 

0.922 19.802 1 

2 

3 

4 

5 

2 

3,3 

1,3 

2 

2,3 

0.94 0.942 16.964 1 

2 

3 

4 

5 

4,6 

3,4,5 

1 

1 

2,2 

--- 

--- 

--- 

3 

 

0.941 20.395 1 

2 

3 

4 

5 

4,6 

3,4,5 

1,3 

1,7 

2,2 

0.96 0.961 17.228 1 

2 

3 

4 

5 

5,,6 

3,4,5 

1 

3,9 

2,2 

--- 

--- 

--- 

2 

0.962 21.628 1 

2 

3 

4 

5 

5,6,6 

3,4,5 

2,2 

3,9 

2,2 

0.98 0.980 19.545 1 

2 

3 

4 

5 

4,6,6 

3,4,4 

2,3 

6,6 

2,2 

--- 

--- 

3 

1 

0.981 22.726 1 

2 

3 

4 

5 

4,6,6 

3,4,4 

2,2 

6,6,7 

1,2 

0.99 0.991 21.512 1 

2 

3 

4 

5 

4,6,7 

3,4,4,4 

2,2 

7,7,7 

2,2 

--- 

--- 

2 

1 

0.990 27.573 1 

2 

3 

4 

5 

4,4,6 

3,4,4,4 

2,2,2 

7,7,7 

2,2,3 
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6 CONCLUSION 

In this paper, we solve the interesting cost reliability design problem which is often 
encountered when designing industrial production systems. An ACO based algorithm is used 
for the resolution of this problem. The developed algorithm, which minimizes total 
investment cost subject to reliability constraints, is proposed for choosing an optimal buffer 
incorporating series-parallel production system configuration. This algorithm seeks and 
selects system elements among a list of available products according to their cost and 
compute the reliability coupled to the demand load of the selected systems. So as to eliminate 
less expensive systems that do not satisfy the reliability requirements a large penalty cost is 
inflicted on such systems. 

The proposed method provides a practical way to solve wide scope of production systems 
reliability optimization problems without limitation on the diversity of available versions of 
elements and buffers. 
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