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Abstract: Modeling of multi agent system is a very important part in the designing process. The paper presents 
an alternating-time temporal logic as such modeling approach. Alternating-time temporal logic (ATL) is 
temporal logic derived from branching temporal logic CTL. ATL models only behavior of multi-agent system on 
propositional level. Design of MAS can be more precise with alternating transition system (ATS), but more 
complicated. This paper tries to explain this complicating process by designing an illustrative multi-agent 
system example. 
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1 INTRODUCTION 

One of the best approaches how to model distributed computer systems is computation tree logic (CTL). This 
logic is used to model a closed system. It consists of two sets the first one being set of states, the other set of 
transitions between states. Thus, distributed system is represented with tree structure. Tree structure is composed 
of states as nodes and transitions as tree branches. Function of CTL is to describe every computation of 
distributed system in the tree structure. Each computation in a distributed system is represented by one path in 
the tree structure. CTL uses path quantifiers “A” and “E” and tense modalities “◊” and “□”. Path quantifier “A” 
denotes that something is true for all paths. On the other hand, path quantifier “E” represents that something is 
true on some path. While path quantifiers concentrate on paths in tree structure, tense modalities concentrate on a 
particular path. Tense modality “◊” denotes that something is eventually true somewhere on the path. The next 
modality “□” expresses that something is always true on the whole path. 

As mentioned before, this is very useful in distributed computer systems. Multi-agent system brings new view on 
distributed computer system [3]. Multi-agent system consists of several agents, but not all of them have to 
cooperate together, because they can create coalitions. Cooperation between two agents from different two 
coalitions is not desirable. This problem and more other problems are not solved by CTL. Multi-agent system 
has to be modeled by another logic. In this paper an alternating-time temporal logic [1] is presented, which can 
be used to model a multi-agent system. Alternating-time temporal logic describes multi-agent system behavior 
only. The structure is described by alternating transition system [1], which is also in the scope of this paper. 

This paper is divided into several sections. It begins with introduction (this section) and finishes by conclusions, 
the (last section). Introduction is followed by the section with definition of alternating transition systems. 
Definitions of several types, such as synchronous and asynchronous system, are proposed in that section. After 
definition of alternating transition system, reader proceeds to the third section, where alternating-time temporal 
logic is discussed. An illustrative example for description of multi agent system is introduced in the following 
fourth section. Definition of alternating transition system is given in Section 5, and Section 6, the model 
checking with definition of alternating-time temporal logic formulas is introduced. 

2 DEFINITION OF ATS 

Alternating Transition System (ATS) [1] can be viewed as 5-tuple ),,,,( δπQS ΣΠ= , where Π  is a set of 
propositions, Σ  is a set of agents, Q  is a set of all states. Π2: →Qπ  is mapping of each state to the set of 

propositions that are true in the state q, where q is part of Q. Mapping 
Q

Q 22: →× Σδ maps each state and agent 
to nonempty set of possible choices. Precise mathematical definitions and examples of alternating transition 
system can be found in [1, page 5-9]. 
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The next state of system S generally depends on the choices of all agents, because the system S proceeds in the 
next state q  iff ∏ ∈= aa Qq Σ  where ),( aqQa δ∈ is a choice made by agent Σ∈a . Note that intersection is 
singleton and that this is general definition of ATS, it can vary from type to type. 

Before discussing particular types of ATS, some new terms are required. Consider two states q , Qq ∈'  and 
agent Σ∈a . We say that 'q  is a-successor of q  if ),(' aqQ δ∈  and '' Qq ∈ , denoted as ),(' aqsuccq = . We say 
that 'q  is successor of q  if ),(' aqsuccq =  for all agents Σ∈a . 'q  is successor of q  iff whenever is the system 
S in state q and all agents can cooperate so that 'q  will be the next state of system S. A computation of S is 
infinite sequence ,...210 qqq=λ  of states such that for 0≥i  the state 1+iq  is successor of iq . Then q-computation 
is computation started with state q . Definite position in computation is denoted as ][iλ , prefix as ],0[ iλ  and 
suffix as ],[ ∞iλ . 

2.1 Synchronous ATS 

Turn-based synchronous ATS 

We say that ATS is turn-based synchronous iff for every state of Q  ∃!  agent Σ∈a  where 1),( =aqδ , 
}'{),( qaq =δ  and ),(}'{ bqq δ⊆  for { }ab \Σ∈ . So turn-based transition system can be viewed as 6-

tuple ( )RQS ,,,,, σπΣΠ= , where Σ→Q:σ  maps each state to the scheduled agent a and QQR ×:  is total 
transition relation ( 'q  is a successor of q  iff )',( qqR ). 

Lock-step synchronous ATS 

Consider ),,,,( δπQS ΣΠ= . The S is lock-step synchronous ATS iff the following conditions are satisfied: 

• ∏ ∈= aa QQ Σ . Assuming global state ( )][],...,[],[ 21 naqaqaqq =  and { }naaaa ,...,,, 321=Σ  set of all agents in 
system, where ][aq is a component of (global) q , which denotes (local) state of agent a . 

• Each agent can determine its next local state dependent on the state of other agents but not dependent on 
choices made by them. Thus, function δ  can by replaced by set of transition functions aQ

a Q 2: →δ . 

2.2 Asynchronous ATS 

Turn-based asynchronous ATS 

In all types of turn-based systems only one agent decides the next state of a system. In synchronous system it 
was function σ , which determines an agent; in asynchronous system, scheduler was created. Scheduler is an 
agent that proceeds in every state. One agent is chosen by the scheduler to proceed with it (scheduler is 
replacement of function σ  in synchronous systems). As in lock-step synchronous ATS we consider a δ  as set 
of local transition function aδ  for Σ∈a . 

ATS is turn-based asynchronous if there exists an agent Σ∈sch  called scheduler and for every agent Σ∈a  and 
every state Qq ∈  exists a local transition function 

Q

a Qq 22:)( →δ such that the following four condition are 
satisfied: 

• For all states Qq ∈  and agent }{\, schba Σ∈ , if ba ≠  then {})()( ≠∩ qq ba δδ . We say that agent Σ∈a  is 
enabled in state q  if {}≠aδ . 

• For all states Qq ∈ , we have )}({),( qschq aδδ =  the agent }{\ scha Σ∈  is enabled in q . 

• For all states Qq ∈  and all agents }{\ scha Σ∈  that are not enabled in q , we have }{),( Qaq =δ . That is, if 
the agent }{\ scha Σ∈  is not enabled, it does not influence the successor state. 

• For all states Qq ∈  and all agents }{\ scha Σ∈  that are enabled in q, assuming },...,{)( 1 ka qqq =δ , we have 
}{))(\(),( ,...,1 iaki qqQaq ∪= = δδ U . If the agent a  is enabled in state q, it chooses a successor state in 

)(qaδ provided it is scheduled to proceed. If, however, a is not scheduled to proceed in q , then it does not 
influence the successor state, which must lie in aQ δ\  because of the first condition. 
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2.3 Fair ATS 

In previous section we have discussed a system without any qualification of possible states in one choice. In 
some cases we want to block, disable some states, namely q-computations. This can be done by the fairness 
condition. 

Consider ),,,,( δπQS ΣΠ= . A fairness condition Γ  is a set of fairness constraints for S, where fairness 

constraint is defined as 
Q

Q 22: →× Σγ  such that ),(),( aqaq δγ ⊆  for Qq ∈∀  and Σ∈∀a . Constraints can be 
in two states a-enabled, a-taken. The first one is a-enabled. The fairness constraint γ  is a-enabled if 

{}),( ≠aqiγ . The second one is a-taken. The fairness constraint γ  is a-taken if ),(' aqQ iγ∈  and '1 Qqi ∈+ . 

Two new terms can be defined characterizing computations regarding to fairness constraints, with respect to a set 
of agents Σ⊆A . The computation λ  is weakly A,γ -fair if for each agent Aa ∈ , either there are infinitely 
many positions of λ  where fairness constraint γ  is not a-enabled, or there are infinitely many position of λ  
where fairness constraint γ  is a-taken. The computation λ  is strongly A,γ -fair if for each agent Aa ∈ , either 
there are finitely many positions of λ  where fairness constraint γ  is a-enabled, or there are infinitely many 
positions of λ  where fairness constraint γ  is a-taken. 

Notes: 

If fairness constraint is strong then it is weak. Note that for fairness condition Γ  a computation λ  is 
strongly/weakly A,Γ -fair iff the computation λ  is weakly A,γ -fair for Γ∈∀γ . Also note that each prefix 

computation of λ  can be extended into strongly A,Γ -fair computation. At the end, note that a computation λ  

is strongly/weakly 21, AA ∪Γ -fair, for Σ∈21, AA , iff computation λ  is strongly/weakly 1, AΓ -fair and 

2, AΓ -fair. 

The fairness condition is useful when some states are intended to be excluded from execution, e.g. infinite 
repeating of some computations’ chunks. 

3 ALTERNATING-TIME TEMPORAL LOGIC 

Alternating–time temporal logic is used to describe behavior of multi-agent systems [1, page 12-17]. With ATL 
it is possible to define formulas with respect to set of proposition and set of agents. Set of propositions and set of 
agents are finite sets. These sets are the same as in ATS model. Each formula has to consist of one or more 
propositions with symbols of some logic operations “¬“, “ ∧”, “∨“. ATL formula also includes path quantifiers 
and temporal operators (tense modalities). The meaning of path quantifier is different than in CTL. Path 
quantifier describes set of agents, which cooperates to satisfy a particular part of ATL formula. ATL 
distinguishes two types of path quantifiers. The first one A , where A is a set of agents, denotes that agents in 

set A  can cooperate to make something true. On the other hand, [ ][ ]A  expresses that agents of set A cannot 
cooperate to make something false, they cannot avoid it. ATL defines three temporal operators: ○ (“next”), □ 
(“always”), U  (“until”). Temporal operator “◊” can also be also found in formulas and means that something 
will happen in the future (◊ ϕϕ trueU≡ ). 

Example: 

Consider a crossroad with traffic lights. Each arriving car has to satisfy several rules. When there is the red light 
cars cannot cross the crossroad. When there is the green light cars can continuously cross the crossroad. The last 
case is that with the orange light. With the red and orange lights the next color will be the green one, with only 
the orange light next color will be the red one. Thus four ATL formulas for the crossroad can be written: 

□ ( )waitcarredligths →  (1) 

□ ( )gocargreenligths →  (2) 

□ ( carorangeredligths →∧ ○ )go  (3) 

□ ( carredorangeligths →¬∧ ○ )wait  (4) 

Note that these rules give no advice to cars how to behave in cases with orange light. They only say that in the 
next step cars can or cannot cross the crossing. Cars have to decide whether they crosses the crossroad. 
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4 A NEGOTIATION BETWEEN TWO AGENTS – ILLUSTRATIVE EXAMPLE 

Consider a part of multi agent system, which consists of two types of agents PA and DA; for simplicity consider 
only one PA agent and several DA agents (Figure 1). PA is an abbreviation of a process agent that evaluates 
some operations. Values of some variables are needed for each operation. These values are retrieved from DA 
(Data Agent). Before value of variable can be retrieved PA looks for some DAs (this searching is not included in 
this paper). 

PA

DA(1)

DA(2)

DA(N)

 

Figure 1. Considered part of a multi agent system 

After particular DA is located, PA starts negotiations, i.e. queries whether DA supports certain variable. After 
the query has been sent by PA, it waits for replay. DA process evaluates this query. If DA does not support 
particular variable, DA will reply with REFUSE message (proposition VNA) and will finish the negotiation 
(proposition ER). Otherwise, if DA supports particular variable, it will reply with ACCEPT message 
(proposition VA) and wait for REQUEST message. PA’s behavior depends on message received from DA. If 
REFUSE message is received (proposition VNA), then PA will finish negotiation (proposition ER). If ACCEPT 
message is received (proposition VA), then PA will continue the negotiation and send REQUEST message to 
DA. PA waits for DA’s reply to REQUEST message. DA received REQUEST message and decides whether it is 
possible to send a value of queried variable. If it is possible (proposition VVA), then ACCEPT message will be 
sent by DA to PA and the negotiation will be finished (ALLOK). Otherwise, if it is not possible to send the value 
of variable (proposition VVNA), then REFUSE message will be sent by DA to PA and negotiation will be 
finished (proposition ER). After PA has received reply message from DA, PA decides about its next behavior. If 
ACCEPT message is received (proposition VVA), then PA will obtain the variable’s value and finish negotiation 
(proposition ALLOK). On the other hand, if REFUSE message is received (proposition VVNA), then PA will 
know that something wrong happened and the behavior of PA will be as follows. PA can finish the negotiation 
or send another REQUEST message, and try to obtain the variable’s value for the second time. PA decision 
whether to finish negation or send another REQUEST message depends on PA strategy. Note that one constraint 
for this strategy has to be set. Agent has to be able to finish the negotiation. For clarity, the whole negotiation 
process is shown in the next figure (Figure 2).  
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Figure 2. State chart for the negotiation process 

 

5 DESIGN OF ATS 

As mentioned in the second chapter, alternating transition system is described by 5-tuple ),,,,( δπQS ΣΠ= . In 
the previous chapter system S  was described by words, but in this chapter we made the description according to 
this definition. Design of an ATS always begins with definition of three sets: set of agents Σ , set of propositions 
Π , set of states Q . There are only two agents in the whole system, thus  

},{ serverclient=Σ . (5) 

Agent client tries to obtain the variable’s value from agent server, which serves such queries. The set of 
propositions consists of six propositions: VA, VNA, VVA, VVNA, ALLOK, ER. The meaning of these 
propositions is given in Table 1. 

 

proposition Description 

VA Variable available 

VNA Variable not available 

VVA Variable’s value available 

VVNA Variable’s value not available 

ALLOK All right, variable’s value is obtained 

ER Some error have occurred  

Table 1 Explanation of propositions 

Set of proposition is defined as follows: 

},,,,,{ ERALLOKVVNAVVAVNAVA=Π . (6) 

The last set, set of states Q , contains twenty-one elements. 

}10,9,...,2,1,11,10,...,2,1{ qSqSqSqSqCqCqCqCQ =  (7) 

Ten of them are states of agent server, the remaining ones are the states of agent client. Each client’s state name 
is qCx , each server’s state name is qSx , where x  is the number of particular agent’s state. 
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Now we can proceed to definition of labeling and transition mappings. Labeling mapping π , as mentioned 
before, is used to map state of agent to propositions. Propositions are mapped to states, in which they are true. 
This mapping is useful in model checking. Behavior of ATS is compared with set of ATL formulas. Transition 
mapping describes the behavior of ATS precisely. It maps transitions between states. Our system is modeled by 
lock-step synchronous system, thus two transition mappings are defined - one transition mapping for each agent. 
Transition mapping Sδ  is defined for agent server, transition mapping Cδ  is defined for agent client. 

Client Server 

state Propositions state propositions 

qC1 - qS1 - 

qC2 - qS2 - 

qC3 VA qS3 VA 

qC4 VNA qS4 VNA 

qC5 VA qS5 VA 

qC6 VA qS6 VA 

qC7 VA,VVA qS7 VA,VVA 

qC8 VA,VVNA qS8 VA,VVNA 

qC9 VA,VVNA qS9 VA,VVA,ALLOK 

qC10 VA,VVA,ALLOK qS10 ER 

qC11 ER     

Table 2 Labeling mapping π  

 

  qS1 qS2 qS3 qS4 qS5 qS6 qS7 qS8 qS9 qS10 

qC1 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2 

qC2 qC2 qC2 qC3 qC4 qC2 qC2 qC2 qC2 qC2 qC2 

qC3 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5 

qC4 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 

qC5 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6 

qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC7 qC8 qC6 qC6 

qC7 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 

qC8 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9 

qC9 
qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC5, 
qC11 

qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 

qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 

Table 3 Transition mapping Cδ  

 

  qC1 qC2 qC3 qC4 qC5 qC6 qC7 qC8 qC9 qC10 qC11 

qS1 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 

qS2 
qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3, 
qS4 

qS3 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 

qS4 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 

qS5 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 
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  qC1 qC2 qC3 qC4 qC5 qC6 qC7 qC8 qC9 qC10 qC11 

qS6 
qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7, 
qS8 

qS7 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 

qS8 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 

qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 

qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 

Table 4 Transition mapping Sδ  

Implementation of decision into alternating transition system can be seen in transition functions. Agent server 
makes decision about variable’s existence in state qS2 (Table 4). The next state is chosen from two possibilities 
(qS3, qS4). Decision in state qC2 of agent client (Table 3) is directly influenced by decision in state qS3 made 
by agent server. These states, so called decision nodes, are highlighted in Tables 3 and 4. 

6 CHECKING OF DESIGNED MODEL 

The crucial problem is to check the correctness of the designed system. This check is done by the model 
checking algorithm given in [1], which compares the designed system with the set of ATL formulas created from 
linguistic description of system. Such linguistic description was made in Section 4. Several ATL formulas can be 
defined. Some of them are presented here: 

• Agents cannot avoid that their negotiation will finish with or without variable’s value exchange. 

[ ][ ]◊ ( ) ( )( )ERALLOK ∨  (8) 

• Decisions in agent server result in next step in agent client. 

� Whenever server supports queried variable, then client will know it in the next step. 

□ ( clientVAserver → ○ )VA  (9) 

� Whenever server does not support queried variable, then client will know it in the next step. 

□ ( clientVNAserver → ○ )VNA  (10) 

� Whenever server is able to sent value of queried variable, then client will know it in the next step. 

□ ( clientVVAserver → ○ )VVA  (11) 

� Whenever server is not able to sent value of queried variable, then client will know it in the next step. 

□ ( clientVVNAserver → ○ )VVNA  (12) 

Several formulas were given above. It is simplier to create set of ATL formulas than alternating transition system 
for the same multi agent system. However from implementation point of view it is easier to implement 
alternating transition system then set of ATL formulas, because ATS is more detailed. It is obvious that both 
ATL formulas and ATS are needed in the design of multi-agent systems. Thus there is only one problem; to 
check that ATS was designed properly and satisfies all ATL formulas. The principle of model checking is very 
easy. All formulas have to be satisfied in all computations. This problem is EXPTIME-complete, so more 
efficient approaches have been invented. There exist model checking algorithms which are PTIME-complete. 

The condition on behavior was set in the description of the multi-agent behavior (Section 4). Agent client has to 
have a requesting strategy (qC9) that agent is able to finish negotiation (qC10 or qC11). If this condition is not 
guaranteed, then the whole system can come to a deadlock. Simply, ATS system has to be extended with fairness 
condition Γ  with strong fairness constraint γ .  

 

{ }γ=Γ  (13) 

}11{),9( qCclientqC =γ  (14) 
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8 CONCLUSION 

This paper concentrated on modeling multi-agent systems with alternating-time temporal logic and alternating 
transition systems. The negotiation between client and server was chosen as the application of such MAS design. 
As mentioned above, various principles how to model distributed computer systems can be used. We can use 
linear temporal logic, branching temporal logic, alternating-time temporal logic (ATL), etc. Mainly, the latter is 
the logic used in multi-agent system. It was invented for multi-agent system and is derived from branching 
temporal logic CTL. CTL describes the behavior of distributed computer system with states and transition 
between them into tree structure. ATL uses this principle, but changes it a bit. ATL is enriched with set of agents 
that are involved in computations described by formula. 

As mentioned above ATL describes only behavior of multi-agent systems. Indeed, it describes structure of MAS, 
but not as precisely as ATS. Alternating transition systems are transition systems like final state machines with 
some advantages. These advantages help them create model of multi-agent systems. Three main types of ATS in 
previous sections have been introduced. Each of them has its own benefits. Turn-based synchronous system is 
very simple system. Its models are the most deterministic ones, and every single step in the system has to be 
synchronized. Another interesting type of ATS is lock-step synchronous system, where each agent is modeled by 
own transition mappings. It is obvious that every system’s steps have to be synchronized (because of the 
synchronous type); but agents are modeled separately. The most general and natural system is the turn-based 
asynchronous system. Design of an asynchronous system is very simple, but in systems with huge number of 
states it is getting more complicated. 
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