

Journal of Cybernetics
and Informatics

published by

Slovak Society for
Cybernetics and Informatics

Volume 5, 2005

http://www.sski.sk/casopis/index.php (home page)

ISSN: 1336-4774

Journal of Cybernetics and Informatics 5 (2005) 24-31
http://www.sski.sk/casopis/index.php

MODELING OF AGENT NEGOTIATION PROCESS
Oravec, V.*, Fogel J.**

*Institute of Informatics, SAS, Dúbravská 9, 84507 Bratislava, Slovakia

**Faculty of Electrical Engineering and Information Technology, Slovak University of Technology,
 Ilkovičova 3, 81219 Bratislava

upsyviki@savba.sk, jaroslav.fogel@stuba.sk

Abstract: Modeling of multi agent system is a very important part in the designing process. The paper presents
an alternating-time temporal logic as such modeling approach. Alternating-time temporal logic (ATL) is
temporal logic derived from branching temporal logic CTL. ATL models only behavior of multi-agent system on
propositional level. Design of MAS can be more precise with alternating transition system (ATS), but more
complicated. This paper tries to explain this complicating process by designing an illustrative multi-agent
system example.

Keywords: multi-agent system, alternating-time temporal logic, alternating transition system, model checking

1 INTRODUCTION

One of the best approaches how to model distributed computer systems is computation tree logic (CTL). This
logic is used to model a closed system. It consists of two sets the first one being set of states, the other set of
transitions between states. Thus, distributed system is represented with tree structure. Tree structure is composed
of states as nodes and transitions as tree branches. Function of CTL is to describe every computation of
distributed system in the tree structure. Each computation in a distributed system is represented by one path in
the tree structure. CTL uses path quantifiers “A” and “E” and tense modalities “◊” and “□”. Path quantifier “A”
denotes that something is true for all paths. On the other hand, path quantifier “E” represents that something is
true on some path. While path quantifiers concentrate on paths in tree structure, tense modalities concentrate on a
particular path. Tense modality “◊” denotes that something is eventually true somewhere on the path. The next
modality “□” expresses that something is always true on the whole path.

As mentioned before, this is very useful in distributed computer systems. Multi-agent system brings new view on
distributed computer system [3]. Multi-agent system consists of several agents, but not all of them have to
cooperate together, because they can create coalitions. Cooperation between two agents from different two
coalitions is not desirable. This problem and more other problems are not solved by CTL. Multi-agent system
has to be modeled by another logic. In this paper an alternating-time temporal logic [1] is presented, which can
be used to model a multi-agent system. Alternating-time temporal logic describes multi-agent system behavior
only. The structure is described by alternating transition system [1], which is also in the scope of this paper.

This paper is divided into several sections. It begins with introduction (this section) and finishes by conclusions,
the (last section). Introduction is followed by the section with definition of alternating transition systems.
Definitions of several types, such as synchronous and asynchronous system, are proposed in that section. After
definition of alternating transition system, reader proceeds to the third section, where alternating-time temporal
logic is discussed. An illustrative example for description of multi agent system is introduced in the following
fourth section. Definition of alternating transition system is given in Section 5, and Section 6, the model
checking with definition of alternating-time temporal logic formulas is introduced.

2 DEFINITION OF ATS

Alternating Transition System (ATS) [1] can be viewed as 5-tuple),,,,(δπQS ΣΠ= , where Π is a set of
propositions, Σ is a set of agents, Q is a set of all states. Π2: →Qπ is mapping of each state to the set of

propositions that are true in the state q, where q is part of Q. Mapping
Q

Q 22: →× Σδ maps each state and agent
to nonempty set of possible choices. Precise mathematical definitions and examples of alternating transition
system can be found in [1, page 5-9].

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 25

The next state of system S generally depends on the choices of all agents, because the system S proceeds in the
next state q iff ∏ ∈= aa Qq Σ where),(aqQa δ∈ is a choice made by agent Σ∈a . Note that intersection is
singleton and that this is general definition of ATS, it can vary from type to type.

Before discussing particular types of ATS, some new terms are required. Consider two states q , Qq ∈' and
agent Σ∈a . We say that 'q is a-successor of q if),(' aqQ δ∈ and '' Qq ∈ , denoted as),(' aqsuccq = . We say
that 'q is successor of q if),(' aqsuccq = for all agents Σ∈a . 'q is successor of q iff whenever is the system
S in state q and all agents can cooperate so that 'q will be the next state of system S. A computation of S is
infinite sequence ,...210 qqq=λ of states such that for 0≥i the state 1+iq is successor of iq . Then q-computation
is computation started with state q . Definite position in computation is denoted as][iλ , prefix as],0[iλ and
suffix as],[∞iλ .

2.1 Synchronous ATS

Turn-based synchronous ATS

We say that ATS is turn-based synchronous iff for every state of Q ∃! agent Σ∈a where 1),(=aqδ ,
}'{),(qaq =δ and),(}'{ bqq δ⊆ for { }ab \Σ∈ . So turn-based transition system can be viewed as 6-

tuple ()RQS ,,,,, σπΣΠ= , where Σ→Q:σ maps each state to the scheduled agent a and QQR ×: is total
transition relation ('q is a successor of q iff)',(qqR).

Lock-step synchronous ATS

Consider),,,,(δπQS ΣΠ= . The S is lock-step synchronous ATS iff the following conditions are satisfied:

• ∏ ∈= aa QQ Σ . Assuming global state ()][],...,[],[21 naqaqaqq = and { }naaaa ,...,,, 321=Σ set of all agents in
system, where][aq is a component of (global) q , which denotes (local) state of agent a .

• Each agent can determine its next local state dependent on the state of other agents but not dependent on
choices made by them. Thus, function δ can by replaced by set of transition functions aQ

a Q 2: →δ .

2.2 Asynchronous ATS

Turn-based asynchronous ATS

In all types of turn-based systems only one agent decides the next state of a system. In synchronous system it
was function σ , which determines an agent; in asynchronous system, scheduler was created. Scheduler is an
agent that proceeds in every state. One agent is chosen by the scheduler to proceed with it (scheduler is
replacement of function σ in synchronous systems). As in lock-step synchronous ATS we consider a δ as set
of local transition function aδ for Σ∈a .

ATS is turn-based asynchronous if there exists an agent Σ∈sch called scheduler and for every agent Σ∈a and
every state Qq ∈ exists a local transition function

Q

a Qq 22:)(→δ such that the following four condition are
satisfied:

• For all states Qq ∈ and agent }{\, schba Σ∈ , if ba ≠ then {})()(≠∩ qq ba δδ . We say that agent Σ∈a is
enabled in state q if {}≠aδ .

• For all states Qq ∈ , we have)}({),(qschq aδδ = the agent }{\ scha Σ∈ is enabled in q .

• For all states Qq ∈ and all agents }{\ scha Σ∈ that are not enabled in q , we have }{),(Qaq =δ . That is, if
the agent }{\ scha Σ∈ is not enabled, it does not influence the successor state.

• For all states Qq ∈ and all agents }{\ scha Σ∈ that are enabled in q, assuming },...,{)(1 ka qqq =δ , we have
}{))(\(),(,...,1 iaki qqQaq ∪= = δδ U . If the agent a is enabled in state q, it chooses a successor state in

)(qaδ provided it is scheduled to proceed. If, however, a is not scheduled to proceed in q , then it does not
influence the successor state, which must lie in aQ δ\ because of the first condition.

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 26

2.3 Fair ATS

In previous section we have discussed a system without any qualification of possible states in one choice. In
some cases we want to block, disable some states, namely q-computations. This can be done by the fairness
condition.

Consider),,,,(δπQS ΣΠ= . A fairness condition Γ is a set of fairness constraints for S, where fairness

constraint is defined as
Q

Q 22: →× Σγ such that),(),(aqaq δγ ⊆ for Qq ∈∀ and Σ∈∀a . Constraints can be
in two states a-enabled, a-taken. The first one is a-enabled. The fairness constraint γ is a-enabled if

{}),(≠aqiγ . The second one is a-taken. The fairness constraint γ is a-taken if),(' aqQ iγ∈ and '1 Qqi ∈+ .

Two new terms can be defined characterizing computations regarding to fairness constraints, with respect to a set
of agents Σ⊆A . The computation λ is weakly A,γ -fair if for each agent Aa ∈ , either there are infinitely
many positions of λ where fairness constraint γ is not a-enabled, or there are infinitely many position of λ
where fairness constraint γ is a-taken. The computation λ is strongly A,γ -fair if for each agent Aa ∈ , either
there are finitely many positions of λ where fairness constraint γ is a-enabled, or there are infinitely many
positions of λ where fairness constraint γ is a-taken.

Notes:

If fairness constraint is strong then it is weak. Note that for fairness condition Γ a computation λ is
strongly/weakly A,Γ -fair iff the computation λ is weakly A,γ -fair for Γ∈∀γ . Also note that each prefix

computation of λ can be extended into strongly A,Γ -fair computation. At the end, note that a computation λ

is strongly/weakly 21, AA ∪Γ -fair, for Σ∈21, AA , iff computation λ is strongly/weakly 1, AΓ -fair and

2, AΓ -fair.

The fairness condition is useful when some states are intended to be excluded from execution, e.g. infinite
repeating of some computations’ chunks.

3 ALTERNATING-TIME TEMPORAL LOGIC

Alternating–time temporal logic is used to describe behavior of multi-agent systems [1, page 12-17]. With ATL
it is possible to define formulas with respect to set of proposition and set of agents. Set of propositions and set of
agents are finite sets. These sets are the same as in ATS model. Each formula has to consist of one or more
propositions with symbols of some logic operations “¬“, “ ∧”, “∨“. ATL formula also includes path quantifiers
and temporal operators (tense modalities). The meaning of path quantifier is different than in CTL. Path
quantifier describes set of agents, which cooperates to satisfy a particular part of ATL formula. ATL
distinguishes two types of path quantifiers. The first one A , where A is a set of agents, denotes that agents in

set A can cooperate to make something true. On the other hand, [][]A expresses that agents of set A cannot
cooperate to make something false, they cannot avoid it. ATL defines three temporal operators: ○ (“next”), □
(“always”), U (“until”). Temporal operator “◊” can also be also found in formulas and means that something
will happen in the future (◊ ϕϕ trueU≡).

Example:

Consider a crossroad with traffic lights. Each arriving car has to satisfy several rules. When there is the red light
cars cannot cross the crossroad. When there is the green light cars can continuously cross the crossroad. The last
case is that with the orange light. With the red and orange lights the next color will be the green one, with only
the orange light next color will be the red one. Thus four ATL formulas for the crossroad can be written:

□ ()waitcarredligths → (1)

□ ()gocargreenligths → (2)

□ (carorangeredligths →∧ ○)go (3)

□ (carredorangeligths →¬∧ ○)wait (4)

Note that these rules give no advice to cars how to behave in cases with orange light. They only say that in the
next step cars can or cannot cross the crossing. Cars have to decide whether they crosses the crossroad.

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 27

4 A NEGOTIATION BETWEEN TWO AGENTS – ILLUSTRATIVE EXAMPLE

Consider a part of multi agent system, which consists of two types of agents PA and DA; for simplicity consider
only one PA agent and several DA agents (Figure 1). PA is an abbreviation of a process agent that evaluates
some operations. Values of some variables are needed for each operation. These values are retrieved from DA
(Data Agent). Before value of variable can be retrieved PA looks for some DAs (this searching is not included in
this paper).

PA

DA(1)

DA(2)

DA(N)

Figure 1. Considered part of a multi agent system

After particular DA is located, PA starts negotiations, i.e. queries whether DA supports certain variable. After
the query has been sent by PA, it waits for replay. DA process evaluates this query. If DA does not support
particular variable, DA will reply with REFUSE message (proposition VNA) and will finish the negotiation
(proposition ER). Otherwise, if DA supports particular variable, it will reply with ACCEPT message
(proposition VA) and wait for REQUEST message. PA’s behavior depends on message received from DA. If
REFUSE message is received (proposition VNA), then PA will finish negotiation (proposition ER). If ACCEPT
message is received (proposition VA), then PA will continue the negotiation and send REQUEST message to
DA. PA waits for DA’s reply to REQUEST message. DA received REQUEST message and decides whether it is
possible to send a value of queried variable. If it is possible (proposition VVA), then ACCEPT message will be
sent by DA to PA and the negotiation will be finished (ALLOK). Otherwise, if it is not possible to send the value
of variable (proposition VVNA), then REFUSE message will be sent by DA to PA and negotiation will be
finished (proposition ER). After PA has received reply message from DA, PA decides about its next behavior. If
ACCEPT message is received (proposition VVA), then PA will obtain the variable’s value and finish negotiation
(proposition ALLOK). On the other hand, if REFUSE message is received (proposition VVNA), then PA will
know that something wrong happened and the behavior of PA will be as follows. PA can finish the negotiation
or send another REQUEST message, and try to obtain the variable’s value for the second time. PA decision
whether to finish negation or send another REQUEST message depends on PA strategy. Note that one constraint
for this strategy has to be set. Agent has to be able to finish the negotiation. For clarity, the whole negotiation
process is shown in the next figure (Figure 2).

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 28

Figure 2. State chart for the negotiation process

5 DESIGN OF ATS

As mentioned in the second chapter, alternating transition system is described by 5-tuple),,,,(δπQS ΣΠ= . In
the previous chapter system S was described by words, but in this chapter we made the description according to
this definition. Design of an ATS always begins with definition of three sets: set of agents Σ , set of propositions
Π , set of states Q . There are only two agents in the whole system, thus

},{ serverclient=Σ . (5)

Agent client tries to obtain the variable’s value from agent server, which serves such queries. The set of
propositions consists of six propositions: VA, VNA, VVA, VVNA, ALLOK, ER. The meaning of these
propositions is given in Table 1.

proposition Description

VA Variable available

VNA Variable not available

VVA Variable’s value available

VVNA Variable’s value not available

ALLOK All right, variable’s value is obtained

ER Some error have occurred

Table 1 Explanation of propositions

Set of proposition is defined as follows:

},,,,,{ ERALLOKVVNAVVAVNAVA=Π . (6)

The last set, set of states Q , contains twenty-one elements.

}10,9,...,2,1,11,10,...,2,1{ qSqSqSqSqCqCqCqCQ = (7)

Ten of them are states of agent server, the remaining ones are the states of agent client. Each client’s state name
is qCx , each server’s state name is qSx , where x is the number of particular agent’s state.

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 29

Now we can proceed to definition of labeling and transition mappings. Labeling mapping π , as mentioned
before, is used to map state of agent to propositions. Propositions are mapped to states, in which they are true.
This mapping is useful in model checking. Behavior of ATS is compared with set of ATL formulas. Transition
mapping describes the behavior of ATS precisely. It maps transitions between states. Our system is modeled by
lock-step synchronous system, thus two transition mappings are defined - one transition mapping for each agent.
Transition mapping Sδ is defined for agent server, transition mapping Cδ is defined for agent client.

Client Server

state Propositions state propositions

qC1 - qS1 -

qC2 - qS2 -

qC3 VA qS3 VA

qC4 VNA qS4 VNA

qC5 VA qS5 VA

qC6 VA qS6 VA

qC7 VA,VVA qS7 VA,VVA

qC8 VA,VVNA qS8 VA,VVNA

qC9 VA,VVNA qS9 VA,VVA,ALLOK

qC10 VA,VVA,ALLOK qS10 ER

qC11 ER

Table 2 Labeling mapping π

 qS1 qS2 qS3 qS4 qS5 qS6 qS7 qS8 qS9 qS10

qC1 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2 qC2

qC2 qC2 qC2 qC3 qC4 qC2 qC2 qC2 qC2 qC2 qC2

qC3 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5 qC5

qC4 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11

qC5 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC6

qC6 qC6 qC6 qC6 qC6 qC6 qC6 qC7 qC8 qC6 qC6

qC7 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10

qC8 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9 qC9

qC9
qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC5,
qC11

qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10 qC10

qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11 qC11

Table 3 Transition mapping Cδ

 qC1 qC2 qC3 qC4 qC5 qC6 qC7 qC8 qC9 qC10 qC11

qS1 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2 qS2

qS2
qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3,
qS4

qS3 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5 qS5

qS4 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10

qS5 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6 qS6

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 30

 qC1 qC2 qC3 qC4 qC5 qC6 qC7 qC8 qC9 qC10 qC11

qS6
qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7,
qS8

qS7 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9

qS8 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10

qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9 qS9

qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10 qS10

Table 4 Transition mapping Sδ

Implementation of decision into alternating transition system can be seen in transition functions. Agent server
makes decision about variable’s existence in state qS2 (Table 4). The next state is chosen from two possibilities
(qS3, qS4). Decision in state qC2 of agent client (Table 3) is directly influenced by decision in state qS3 made
by agent server. These states, so called decision nodes, are highlighted in Tables 3 and 4.

6 CHECKING OF DESIGNED MODEL

The crucial problem is to check the correctness of the designed system. This check is done by the model
checking algorithm given in [1], which compares the designed system with the set of ATL formulas created from
linguistic description of system. Such linguistic description was made in Section 4. Several ATL formulas can be
defined. Some of them are presented here:

• Agents cannot avoid that their negotiation will finish with or without variable’s value exchange.

[][]◊ () ()()ERALLOK ∨ (8)

• Decisions in agent server result in next step in agent client.

� Whenever server supports queried variable, then client will know it in the next step.

□ (clientVAserver → ○)VA (9)

� Whenever server does not support queried variable, then client will know it in the next step.

□ (clientVNAserver → ○)VNA (10)

� Whenever server is able to sent value of queried variable, then client will know it in the next step.

□ (clientVVAserver → ○)VVA (11)

� Whenever server is not able to sent value of queried variable, then client will know it in the next step.

□ (clientVVNAserver → ○)VVNA (12)

Several formulas were given above. It is simplier to create set of ATL formulas than alternating transition system
for the same multi agent system. However from implementation point of view it is easier to implement
alternating transition system then set of ATL formulas, because ATS is more detailed. It is obvious that both
ATL formulas and ATS are needed in the design of multi-agent systems. Thus there is only one problem; to
check that ATS was designed properly and satisfies all ATL formulas. The principle of model checking is very
easy. All formulas have to be satisfied in all computations. This problem is EXPTIME-complete, so more
efficient approaches have been invented. There exist model checking algorithms which are PTIME-complete.

The condition on behavior was set in the description of the multi-agent behavior (Section 4). Agent client has to
have a requesting strategy (qC9) that agent is able to finish negotiation (qC10 or qC11). If this condition is not
guaranteed, then the whole system can come to a deadlock. Simply, ATS system has to be extended with fairness
condition Γ with strong fairness constraint γ .

{ }γ=Γ (13)

}11{),9(qCclientqC =γ (14)

V.Oravec and J.Fogel / Journal of Cybernetics and Informatics 5 (2005) 24-31 31

7 ACKNOWLEDGEMENT

The work presented in the paper was supported by following projects:

� APVT – 51 – 011602

� VEGA 2/4148/24

8 CONCLUSION

This paper concentrated on modeling multi-agent systems with alternating-time temporal logic and alternating
transition systems. The negotiation between client and server was chosen as the application of such MAS design.
As mentioned above, various principles how to model distributed computer systems can be used. We can use
linear temporal logic, branching temporal logic, alternating-time temporal logic (ATL), etc. Mainly, the latter is
the logic used in multi-agent system. It was invented for multi-agent system and is derived from branching
temporal logic CTL. CTL describes the behavior of distributed computer system with states and transition
between them into tree structure. ATL uses this principle, but changes it a bit. ATL is enriched with set of agents
that are involved in computations described by formula.

As mentioned above ATL describes only behavior of multi-agent systems. Indeed, it describes structure of MAS,
but not as precisely as ATS. Alternating transition systems are transition systems like final state machines with
some advantages. These advantages help them create model of multi-agent systems. Three main types of ATS in
previous sections have been introduced. Each of them has its own benefits. Turn-based synchronous system is
very simple system. Its models are the most deterministic ones, and every single step in the system has to be
synchronized. Another interesting type of ATS is lock-step synchronous system, where each agent is modeled by
own transition mappings. It is obvious that every system’s steps have to be synchronized (because of the
synchronous type); but agents are modeled separately. The most general and natural system is the turn-based
asynchronous system. Design of an asynchronous system is very simple, but in systems with huge number of
states it is getting more complicated.

9 REFERENCES
[1] R. Alur, T.A. Henzinger, O. Kupferman. Alternating-time temporal logic. 38th IEEE Symposium on
Foundations of Computer Science, pp. 100-109, 1997.

[2] W. van der Hoek and M. Wooldridge. Cooperation, Knowledge, and Time: Alternating-time Temporal
Epistemic Logic and its Applications. In Studia Logica, 75(1):125-157, October 2003

[3] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. In Knowledge Engineering
Review 10(2), 1995

