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Abstract  
The linear matrix inequality (LMI) based residual generator design approach is presented in this paper. 
Design conditions are expressed in the terms of LMIs with the matrix rank constraints, implying from 
Lyapunov equation, which correspond to a feasible solution. Obtained formulation is the convex LMI 
problem for the full order residual generator design. This handles the optimized structure of the residual 
generator for the discrete-time linear systems. Given method is demonstrated using a structural system 
model example, which includes the actuator and sensor fault vectors, respectively.  
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1 INTRODUCTION 

The complexity of the control systems requires the fault tolerance schemes to provide control 
of the faulty system. The fault tolerant systems are such a remarakable applications having 
potential significance for these domains in which control of the systems must proceed while 
the system is operative and testing opportunities are limited by operational considerations. The 
real problem is usually to fix the system with faults so that it can continue its mission over a 
period of time with certain functionality limitation. The automated diagnosis is one part of 
these large problems known as fault detection, identification and reconfiguration (FDIR). The 
practical benefits of an integrated approach to FDIR seem to be considerable, especially when 
knowledge about fauilure information, available in the fault isolation stage and used in the 
reconfiguration latency, increases the control reliability and utility. Whereas diagnosis is the 
problem of identifying elements whose abnormality is sufficient to explain an observed 
malfunction, reconfiguration can be viewed as the problem of identifying elements whose 
reconfiguration is sufficient to restore acceptable behavior of the system. 
In recent years, significant progress has been achieved in this field where the residual based 
FDI techniques using the parity spaces, observers and filters schemes, as well as the parameter 
estimation methods for the residual generator design have been developed [Krokavec and 
Filasová, 2007]. To obtain robust FDI schemes in presence of disturbances, the optimized 
residual generators have been proposed.  
In this work, the linear matrix inequality (LMI) based H∝ formulation of the residual generator 
transfer function design is presented for the discrete-time systems. The fixed-order residual 
generator is characterized in terms of the convex LMIs, where convex parameterization is 
represented as a set of LMIs using Lyapunov function. This way, the residual generator can be 
achieved by the convex optimization for the systems without disturbances. The presented 
method is a straightforward adaptation of the methodology introduced in [Nobrega et all, 2000] 
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and the integrated procedure provides formulas to use in the residual generator design 
techniques when designing for the state-space generator structures.  

2 ORTHOGONAL COMPLEMENT  

The singular value decomposition of a real matrix X, X ∈ Ρhxh, with rank(X) = k < h, gives 
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where UT is the orthogonal matrix of the left singular vectors and V is the orthogonal matrix of 
the right singular vectors of X. Matrix Σ1 is a diagonal positive definite matrix of the form 
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whose diagonal elements are singular values of X. Using orthogonal properties of U, V, i.e. 
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where I(*) is the identity matrix of the appropriate dimension, then X can be written as 
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Then (3), (4) implies 
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It is evident that for an arbitrary nonsingular matrix Y is 

2 2,T T⊥ ⊥= = =X X YU X 0 X YU  (6) 
where the non-unique matrix X┴ is an orthogonal complement to X. 

3 SCHUR COMPLEMENT  

Let a linear matrix inequality takes the form 
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Using Gauss elimination yields a consistent result 
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this transform does not change the positivity of  (7),  i.e. it follows as a consequence 
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respectively. 
To solve this problem with the another transform matrix, where 
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1det 1T −

⎡ ⎤
=⎢ ⎥−⎣ ⎦

I 0
S Q I

 (11) 

it can be obtained 
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Analogously, for the linear matrix inequality 
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respectively.  
Following the similar approach to solve for 
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it can be easily shown it becomes 
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As one can see, these complements offer the possibility to rewrite nonlinear inequalities in the 
closed matrix LMI form. 

4 STABILIZING CONTROL  

Let the system under consideration is given by the state-space representation 

( 1) ( ) ( )i i i+ = +q Fq Gu     (21) 
( ) ( )i i=y Cq  (22) 

with constant matrices F ∈ Ρnxn, G ∈ Ρnxr, and C ∈ Ρmxn.  
To formulate the stabilizing control design task it is assumed the matrices F, G to be real, all 
system states can be observed or measured, pair (F, G) is controllable, and the system (21), 
(22) is controlled by the output feedback control law 

( ) ( ) ( )i i i= − = −u Ky KCq  (23) 
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where K ∈ Ρnxm is a constant matrix. Substituting (23) into (21) results in 
( 1) ( ) ( )i i+ = −q F GKC q     (24) 

Since the overall system (21) is linear in q(i), the Lyapunov function v(q(i)) can be of the form 
v( ( )) ( ) ( ) ( )Ti i i i=q q P q  (25) 

where v(q(i)) is a quadratic positive definite function of the state of the system, with a 
symmetric positive definite weighting matrix P(i). If a steady-state solution of P(i) exists, 
evaluating the difference of (25) for the steady-state solution P of P(i) gives 

v( ( ), ( )) ( 1) ( 1) ( ) ( ) 0T Ti i i i i i∆ = + + − <q u q Pq q Pq  (26) 

( )v( ( ), ( )) ( ) ( ) ( ) ( ) 0T Ti i i i∆ = − − − <q u q F GKC P F GKC P q  (27) 

( ) ( ) 0T− − − <F GKC P F GKC P  (28) 
respectively. 
According to Schur complement property (17), inequality (28) can be rewritten as follows 
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Now, using the composed form inequality (29) implies 
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respectively.  
Therefore, using (10) inequality (31) can be partioned into the form 
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or analogously, using (13), into the form 

[ ] 1 1 0, 0
T

T T
T− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤+ − < >⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦⎣ ⎦

0 P 0C
K C 0 K 0 G P

G 0 P FP F0
 (33) 

Denoting 
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left-multiplication of (33) by (34) and right-multiplication by its transposition lead to the 
inequalities 
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which is equivalent to 
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In the same spirit, pre-multiplication of (32) on the left and the right side by the orthogonal 
complement 
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and its transposition, results in 

1 1
0, 0

T T T T
T T T T

⊥
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
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which is equivalent to 

( ) 0, 0T T T T⊥ ⊥− > >C P F PF C P  (39) 
In this regard, the necessary and sufficient conditions for the existence of K satisfying (28) are 
given by (36) and (39). 
The simple way how to obtain any solution satisfying both (36) and (39), is to use in (36) the 
independent LMI variable Z. Therefore, there can be solved the next LMIs 

( ) 0, 0T T T T⊥ ⊥− > >C P F PF C P  (40) 

( ) 0, 0T T⊥ ⊥− > >G Z FZF G Z  (41) 
where the matrix variables P and Z are adjoined with the condition 

1 0, 0, 0− ⎡ ⎤− > ⇒ > >⎢ ⎥⎣ ⎦

P IP Z Z
I Z

 (42) 

and for computing of the gain matrix K is then used that matrix variable from P, Z (and its 
inversion), which satisfies as (36) as (39).   

5 GAIN MATRIX 

Expanding Lyapunov inequality (28) it can be obtained  
T T T T T T T T− − + <F PF C K G PF F PGKC C K G PGKC P  (43) 

Completing to square in (43) gives 
1( ) ( )T T T T T T

G G G G
−− − − < −KC P G PF P KC P G PF F PGP G PF P F PF  (44) 

1 1( ) ( )T T T
G G G

− −− − <KC P G PF P KC P G PF Φ  (45) 
respectively, where 

1 10, 0T T T T
G G
− −= > = − + >P G PG Φ P F PF F PGP G PF  (46) 

Then, by Schur complement formula (45), (46) are equivalent to 

( ) ( )T T T
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After expanding (47) it yields 
T T T T T T T T

G G G G G− − + <KCΦC K KCΦF PGP P G PFΦC K P G PFΦF PGP P  (48) 

and completing to another square gives the result 
1( ) ( )T T T T T
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+ − <

K Φ CΦF PGP Φ K Φ CΦF PGP
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Those, it yields 
1( ) ( )T T T T T

C G C C G
−− − <K Φ CΦF PGP Φ K Φ CΦF PGP Ψ  (50) 

where 
1 0, ( ) 0T T T T

C G G C G
− = > = − − >Φ CΦC Ψ P P G PF Φ ΦC Φ CΦ F PGP  (51) 

Since matrix Ψ is the positive definite matrix, it can be supposed that there exists an arbitrary 
matrix L such that 
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1 1 1 1
2 2 2 2( ) ( ) , 1T T T T T T

C G C C C G
− −− − = <K Φ CΦF PGP Φ Φ K Φ CΦF PGP Ψ L LΨ L  (52) 

and 
1 1
2 2T T

C G C= +K Φ CΦF PGP Φ LΨ  (53) 

6 RESIDUAL FILTER 

The state-space model of the time-invariant linear discrete-time MIMO system with the 
actuator and the sensor faults is generally described by the equations 

( 1) ( ) ( ( ) ( ))ai i i i+ = + +q Fq G u f  (54) 

( ) ( ) ( ) ( )si i i i= + +y Cq Du f  (55) 
where F, G, C, and D are constant matrices of appropriate dimensions, and fa, fs are vectors of 
the actuator and sensor faults, respectively. 
For this system the objective is to design a stable linear dynamic residual filter with the state-
space representation 

( 1) ( ) ( )i i i+ = +p Jp Ly  (56) 
( ) ( ) ( ) ( )i i i i= + +r Vp Wy Gu  (57) 

Substituting (55) in (56) and (57) results in 
( 1) ( ) ( ) ( ) ( ) ( ) ( )si i i i i i i+ = + = + + +p Jp Ly Jp LCq LDu Lf  (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )si i i i i i i i= + + = + + + +r Vp Wy Gu Vp WCq WD G u Wf  (59) 

and assembling (54), (58), as well as (59) in the compact form,  it can be obtained 
( )( 1) ( ) ( ) ( )( 1) ( )

a
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s

iii i ii
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fqr WC V WD G u 0 W fp
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Therefore, the faults free system (60), (61) can now be described as follows 
( 1) ( ) ( )
( 1) ( )
i i i
i i
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 (63) 

Such description can be rewritten in terms of K° in the form 
( 1) ( ) ( ) ( ) ( )i i i+ = − + −q F G K C q L G K D uo o o o o o o o o o  (64) 

( ) ( ) ( ) ( ) ( )i i i= − + −r M H K C q N H K D uo o o o o o o o o  (65) 

where with q°T(i) = [qT(i) pT(i)] ∈ Ρ2n it is denoted 
2 2 2 2 ( ) 2, ,n n n n m n n× × + ×⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∈ = ∈ = ∈⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

F 0 0 0 C 0F G C
0 0 0 I 0 I

o o o� � �  (66) 

[ ]2 ( ) 2 2, ,n m n n r n n× + × ×⎡ ⎤ ⎡ ⎤= − ∈ = ∈ = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

W V DK D H I 0
L J 0

o o o� � �  (67) 

2 ,n n n r× ×= ∈ = ∈M 0 N Go o� �  (68) 
Note, the system matrix of such fault residual filter in (64) takes the same structure as the 
system matrix in (24). Lyapunov inequality for (64) can be equivalently written as 
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( ) ( ) 0T− − − <F G K C P F G K C Po o o o o o o o o o  (69) 

and (69) can take form (33), i.e. 

1 1
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T
T T
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 and 

2n
⊥ ⊥

⎡ ⎤
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Pre-multiplying (70) from the left side by (71) and from the right side by its inversion, it can be 
obtained for P° > 0 

1 1( ) 0, 0T T⊥ − − ⊥− > >G P F P F G Po o o o o o o  (72) 
Considering that 

121

12 22

,T
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Z Z I 0
P G
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it provides for (72) 
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T
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Z
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which is equivalent to 
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When the structure (32) is utilized, it follows 

1
0, 0

T T
T T

−

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − < >⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 C P F P F 0
K C 0 K 0 G P

G 0 0 P

o o o o o
o o o o o

o o
 (76) 

T

T
T T T⊥ ⊥

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= = ⇒⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

C 0
C 0 IC C C 0
0 0 0

0 0

o
o o o
� � �  (77) 

which equivalent form is 

( ) 0, 0T T T T⊥ ⊥− > >C P F P F C Po o o o o o o  (78) 

Taking in solution that 

12

12 22

, T T
T

⊥ ⊥⎡ ⎤
⎡ ⎤= ⎢ ⎥ ⎣ ⎦

⎣ ⎦

Y Y
P C C 0

Y Y
o o o

� �  (79) 

it can be verified, that  

12 12

12 22 12 22

0, 0
T T T

T
T T

⊥
⊥

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ − > >⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜ ⎟⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

Y Y Y Y F 0F 0 C
C 0 Z

Y Y Y Y 0 00 0 0

o
o  (80) 

( ) 0, 0T T T T⊥ ⊥− > >C Y F YF C Y  (81) 

respectively, i.e. for Y = P (81) is equivalent with (78). 
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7 RESIDUAL FILTER PARAMETER DESIGN 

It is evident that Lyapunov function (69) takes the same structure as (28). Therefore, the filter 
matrices (67) can be derived using the generalized structure of (53) and (46), (51), i.e. 

 
1 1
2 2 , 1

T T
T T

C G CT T

⎡ ⎤
= − = + <⎢ ⎥

⎣ ⎦

W L
K Φ C Φ F P G P Φ LΨ L

V J
o oo o o o o o o o o o  (82) 

1 0T
G
− = >P G P Go o o o  (83) 

1 0T T T
G

− = − + >Φ P F P F F P G P G P Fo o o o o o o o o o o o  (84) 
1 0T

C
− = >Φ C Φ Co o o o  (85) 

( ) 0T T T
G G C G= − − >Ψ P P G P F Φ Φ C Φ C Φ F P G Po o o o o o o o o o o o o o o o  (86) 

where the design matrices are given in (66) and L° is a non-square matrix, satisfying (82). In 
the above, it is implicitly assumed that matrix P° is known, i.e. P° is a solution of (69). 

Partitioning P° and P°-1, with the same notation as in (73) and (79), gives  

12 1 12 1

12 22 12 22

, ,T T
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Y Y Z Z I 0P P P P
0 IY Y Z Z

o o o o  (87) 

1
12 12 12 22 12,T T T−= + = −I YZ Y Z Z Y Y Z  (88) 

1
12 22 12( )T−= −I Y Y Y Y Z  (89) 

respectively, and using Sherman – Morrison – Woodbury equality 
1 1 1 1 1 1 1( ) ( )− − − − − − −+ = − +A BCD A A B C DA B DA  (90) 

it can be obtained 
1 1 1 1 1 1 1

12 22 12 12 22 12 12 12( ) ( )T T T− − − − − − −= − = − − +Z Y Y Y Y Y Y Y Y Y Y Y Y Y  (91) 
1 1 1

12 22 12 12 12( ) ( )T T− − −− = −Y Z Y Y Y Y Y Y Y Y  (92) 

Since (87) also implies   
1

12 12 22 22 12 12 22,T −= + = −I Y Z Y Z Z Y Y Z  (93) 
1 1 1 1 1

22 22 12 12 22 22 12 12 22 22 22 12 12
T T T− − − − −= + = − = −Z Y Y Z Z Y Y Y Y Z Z Y Y Y Y  (94) 

substituting (94) in (92) finally results in 

12 22 12
T= − =E YZY I Y Z Y  (95) 

Hence, using SVD property 
[ ] [ ]1 2 1 2, , , diagT

E E E E E E En E E E Enσ σ σ= − = = =E YZY I E V Σ T V v v v ΣL L  (96) 

where ΣE is the matrix of singular values of E and VE is the matrix of the associated singular 
vectors, it can be chosen 

1 1
12 22 22 22 12 12, T

E E
− −= = ⇒ = +Y V Z Σ Y Z Y Y Y  (97) 

to complete the elements of P°. 

Matrix P°, which elements are computed using (96), (97), and Y, Z satisfies (81), (75), 
respectively, can be used to compute the residual filter parameter from (82) – (86) instead of 
any another matrix P°, possibly obtained directly from (69). 
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8 ILLUSTRATIVE EXAMPLE 

To demonstrate the algorithm properties it was assumed that system is given by  (54) - (55), 
where 

0.9993 0.0987 0.0042 0.0051 0.0050
1 0 10.0212 0.9612 0.7775 , 0.1029 0.0987 , ,
0 1 10.3875 0.7187 0.5737 0.0387 0.0388

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− − −⎣ ⎦ ⎣ ⎦

F G C D 0  

Applying Matlab function svd(.), the orthogonal complements were obtained as 
[ ] [ ]0.5774 0.5774 0.5774 , 0.9987 0.0500 0.0014T⊥ ⊥= − − = − −C G  

Using Self-Dual-Minimization (SeDuMi) package for Matlab the output-feedback gain matrix 
problem was solved as feasible with the matrices 

7.3196 2.1052 2.5690 3.8739 0.0587 0.1002
2.1052 7.5368 1.8613 , 0.0587 4.7617 0.0555
2.5690 1.8613 2.8825 0.1002 0.0555 4.9905

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

P Z   

where only P satisfies (36) and (39). For that P, upon some computation, it was found 

1 1 1
2.3562 1.8594 2.5633

0.1024 0.0742 0.6599 1.3804, 1.8594 7.5246 1.8610 ,
0.0742 0.0648 1.3804 11.94352.5633 1.8610 2.8825

G C
− − −

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

P Φ Φ  

and with L = 0 the final results were   
1.0063 0.0988 0.0113

7.0353 8.5785
, 0.1016 0.9584 0.1974

1.7392 1.7844
0.9926 0.8582 0.1680

T
c

⎡ ⎤
−⎡ ⎤ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥− − −⎣ ⎦

K F F GKC   

Closed-loop eigenvalues spectrum is ρ(Fc) = {0.0000, 0.8471, 0.9496}. 

Solving the above for residual filter parameter, using (75) and (81) it was obtained 

1.1986 0.3208 0.3976 0.4069 0.1546 0.1554
0.3208 1.6333 0.3203 , 0.1546 0.3685 0.2065
0.3976 0.3203 0.5207 0.1554 0.2065 0.6645

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Y Z   

Substituting the above parameter matrix into (95), and applying SVD to matrix E gives 

0.1904 0.3506 0.4727
0.3506 0.1792 0.4819
0.4727 0.4819 0.6238

−⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦

E   

22 12

0.9804 0.3208 0.3976 0.4190 0.5146 0.7481
0.3208 0.7176 0.3203 , 0.2375 0.7331 0.6373
0.3976 0.3203 0.3722 0.8764 0.4447 0.1849

E E

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = = −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

Σ Z V Y   

respectively, and 

1
22 22

4.1459 0.3230 0.0426 0.2444 0.0406 0.0032
0.3230 1.9459 0.0270 , 0.0406 0.5207 0.0044
0.0426 0.0270 3.6148 0.0032 0.0044 0.2767

−
− −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − = −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

Y Y   

Now, providing a construction for matrix (83), it is evident that for C° given in (66) matrix (83) 
is a singular matrix. Therefore, using pseudo-inversion of (83), i.e. 

1
1

22 22

,T
G G
−

−

⎡ ⎤⎡ ⎤= = = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

0 00 0P G P G P
0 Y 0 Y

o o o o o   
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it is obvious, that the generalized gain matrix K°T takes degenerative structure 

0 0 0 0.0400 0.0581 0.1958
0 0 0 0.0764 0.0790 0.1787
0 0 0 0.5441 0.3225 0.0206
0 0 0 0.2850 0.1690 0.0108
0 0 0 0.0263 0.0156 0.0010

T

− −⎡ ⎤
⎢ ⎥− − −
⎢ ⎥= − −⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

Ko   

where matrix parameters J and L are 
0.0400 0.0764 0.5441 0.2850 0.0263 0.7140
0.0581 0.0790 , 0.3225 0.1690 0.0156 , eig( ) 0.0000
0.1958 0.1787 0.0206 0.0108 0.0010 0.0000

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = − =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L J J   

and V and W are free parameters to abolish linear dependency from residual filter. Since all 
eigenvalues of J lie in unit circle, residual filter is stabile. 

9 CONCLUDING REMARKS 

The residual filter parameter design method is presented, as the generalization of the output 
feedback control design method. The method uses the standard LMI numerical optimization 
procedures to manipulate the residual generator matrices as LMI variables. This way, the 
eigenvalues of the residual generator system matrix J are placed in the unit circle in the z-plane 
and the input matrix L is designed in consequence. The rest filter matrix parameters are free to 
move out the linear dependency from the residual filter output.  
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