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Abstract  
Although the Laplace and Z transforms of nonlinear differential and respectively difference equations 
are not defined a transfer function formalism for nonlinear continuous-, discrete-time and time-delay 
systems was developed recently. Such a formalism shows many properties we expect from transfer 
functions and in this paper we provide its overview and discuss some basic properties. 
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1 INTRODUCTION 

Although the Laplace and Z transforms are not defined when control systems are nonlinear the 
transfer function formalism was developed recently. For continuous-time case it was given in 
[2], [5] and [14], for discrete-time case in [3] and [10] and for time-delay systems in [7]. Such 
a formalism is, in principle, similar to the linear theory, except that the polynomial description 
relates now the differentials of system inputs and outputs, and the resulting polynomial ring is 
non-commutative. In what follows we provide an overview of this formalism and discuss some 
basic properties. 

2 ALGEBRAIC FRAMEWOK 

Modern development in nonlinear control theory is related mainly to the use of differential 
algebraic methods. Algebraic formalism of differential one-forms, originally developed to 
handle nonlinear continuous-time systems [1], was later extended to the discrete-time case [4] 
and recently also to the case of nonlinear systems with time delays [6]. It considers so-called 
generic properties and from such a point of view nonlinear control systems, forming the scope 
of our attention, are objects of the form 
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where the entries of f and g are meromorphic functions, which we think of as elements of the 
quotient field of the ring of analytic functions, and ( ) nRtx ∈ , ( ) mRtu ∈  and ( ) pRty ∈  denote the 
state, the input and the output to the system, respectively. 
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Let K denote the field of meromorphic functions of the independent variables; that is, 
( ) ( ) ( ){ }0;, ≥ktutx k  for continuous-time case, ( ) ( ){ }0;, ≥+ kktutx  for discrete-time case and 
( ) ( ) ( ){ }0,,;, ≥−− kjijtuitx k  for time-delay case. 

Let ε be the formal vector space over K given by 

 { }KK ∈= ξξε ;dspan   (2) 

Both, K and ε, can be endowed with the structure given by the equations (1) by defining 
differential, shift and, respectively, time-delay operators. For more details and additional 
references see [1], [4] and [6]. 

Remark 1. Note that in case of rational (or even algebraic) functions the elements of the vector 
space ε can be understood as Kähler differentials [11] having been widely used to study 
nonlinear control systems, see for instance [12] and references therein. However, if one tends 
to include functions like ( )⋅exp  or ( )⋅ln , as for instance in Example 6, it is necessary to employ 
the differential one-forms as introduced in [1]. 

 

2.1 Skew polynomials 
The next step is to extend this algebraic point of view by introducing certain non-commutative 
rings of skew polynomials defined over the field of meromorphic functions K. Such 
polynomials play a role of differential, shift and time-delay operators, see [2], [3], [5], [7] [10], 
[13] and [14]. 

Continuous-time case. The differential field K and the derivative operator td/d  induce the 
left skew polynomial ring [ ]sK  of polynomials in s over K with usual addition and the non-
commutative multiplication given by the commutation rule 

 ( ) ( ) ( )tastatsa &+=   (3) 

for any ( ) K∈ta . 

The commutation rule (3) actually represents the rule for differentiating. Polynomials from 
ring [ ]sK  thus represent differential operators and act over the vector space ε in the following 
way 
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for any ( ) ε∈tv . 

Discrete-time case. The difference field K and the forward shift operator δ induce the left 
skew polynomial ring [ ]δK  of polynomials in δ over K with usual addition and the non-
commutative multiplication given by the commutation rule 

 ( ) ( )δδ 1+= tata   (5) 

for any ( ) K∈ta . 

The commutation rule (5) actually represents the rule for forward shifting. Polynomials from 
ring [ ]δK  thus represent shift operators and act over the vector space ε in the following way 
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for any ( ) ε∈tv . 

Time-delay case. Finally,  the differential field K and the derivative operator td/d  and the 
time-delay operator δ induce the left skew polynomial ring [ ]s,δK  of polynomials in δ and 
s over K with usual addition and the non-commutative multiplication given by the 
commutation rules 
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for any ( ) K∈ta . 

The commutation rules (7) actually represent the rules for differentiating and, respectively, 
backward shifting (time-delaying). Polynomials from ring [ ]s,δK  thus represent differential 
time-delay operators and act over the vector space ε in the following way 
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for any ( ) ε∈tv . 

Note that while in the discrete-time case δ stands for forward shift operator, takes t to t + 1, in 
the time-delay systems it is assumed to be the time-delay operator and takes t to t – 1. Whether 
we think of δ as forward shift or, respectively, time-delay operator will be clear from the 
context or explicitly stated otherwise. 

All skew polynomial rings satisfy the so-called Ore condition and can be thus embedded to the 
non-commutative quotient fields, see [2], [3], [5], [7], [10], [15] and [16] for more details. 

Addition is defined by reducing two quotients to the same denominator 
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where 2112 bb ββ =  by Ore condition. Multiplication is defined by 
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where 2112 ba αβ =  again by Ore condition. 

Of course, due to the non-commutative multiplications (3), (5) and (7) the addition and 
multiplication of quotients of skew polynomials differ from the usual rules. 

2.2 Transfer functions 
Once the fraction of two skew polynomials is defined we can introduce transfer function of the 
nonlinear system of the form (1) as a quotient F of skew polynomials such that ( ) ( )tuFty dd = . 

Example 1. Consider the nonlinear continuous-time system ( ) ( ) ( )tutyty =& . Then  
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Example 2. Consider the nonlinear discrete-time system ( ) ( ) ( ) ( )tututyty ++=+ 12 . Then  
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and transfer function 
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Example 3. Consider the nonlinear time-delay system ( ) ( ) ( )11 −−= tutyty &&& . Then  
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and transfer function 
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Note again that while in discrete-time case δ stands for forward shift operator, takes t to t + 1, 
in time-delay systems it is assumed to be the time-delay operator and takes t to t – 1. 

Of course, transfer functions can be computed also from the system equations (1). This is 
demonstrated in the following example. 

Example 4. Consider the the nonlinear time-delay system 
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After differentiating, we get 

 
( ) ( ) ( )
( ) ( ) ( )tuDtxCty

tuBtxAtx
ddd
ddd

+=
+=&

 

where 

 ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
=

tu
A

0
0 δ

,    ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
=

tx
B

2

0
,     ( )01=C  

Note that 

 ( ) ( )

( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−−=− −

tus

stussAsI 10

1
1

2
1

δ

 

Finally 

 ( ) ( )
( )

( ) ( )
( )

( )
( )stus
ty

stus
tx

tx
stus

BAsICsF
11

1
1

, 22
2

22
1

−−
=

−−
−

=⋅
−−

=−= − δδδδ
&  

In spite of the formal similarity to the transfer functions of linear time-delay systems, inverting 
matrix ( )AsI − over the non-commutative field is now far from trivial, since entries of ( )AsI −  
are skew polynomials from the ring [ ]s,δK . Inversion requires finding a solution to the set of 
linear equations over a non-commutative field, see [5] and [15].  
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3 BASIC PROPERTIES OF TRANSFER FUNCTIONS 

Transfer functions as defined in previous section have many properties we expect from transfer 
functions: 

- they are invariant with respect to state-transformations, 

- they provide input-output description, 

- they are related to the accessibility and observability of a nonlinear system, 

- they allow us to use the transfer function algebra when combining systems in series, 
parallel and feedback connection. 

3.1 Invariance under state-transformation 
Clearly, each linear system has a unique transfer function. Any linear state-space 
transformation ( ) ( )tTxt =ξ  represents, in fact, a linear transformation under which the transfer 
function, defined by Laplace transforms, is invariant. However, the same can be said also for 
transfer functions of nonlinear systems, all of them, continuous-, discrete-time and time-delay. 
Naturally, one can consider nonlinear state-space transformations ( ) ( )( )txt φξ =  as well 
(respectively, ( ) ( ){ }( )0; ≥−= iitxt φξ  for time-delay case). 

Consider, for instance, the discrete-time case (see [3] for more details). 
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Instead of equations (11), we can equivalently work on differentials 
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where ( ) ( )( )txfA ∂∂= . , ( ) ( )( )tufB ∂∂= . , ( ) ( )( )txgC ∂∂= .  and ( ) ( )( )tugD ∂∂= . . Equations (12) 
can be reformulated as 
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Now, it follows 

 ( ) ( ) DBAICF +−= −1δδ   (14) 

Note again that in spite of the formal similarity to transfer functions of linear discrete-time 
systems, inverting matrix ( )AI −δ over the non-commutative field is far from trivial, since the 
entries of ( )AI −δ  are skew polynomials. 

For any state transformation ( ) ( )( )txt φξ =  one has rankK nT = , where ( )( )txT ∂∂= φ . Since 
( ) ( )txTt dd =ξ , in the new coordinates we have 
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where ( )Tδ  means δ applied pointwise to T. Thus, the transfer function reads as 

 ( ) ( )( ) ( ) ( )( ) DBATTCDBTATTICTF +−⋅=+−=
−−−−− 11111 δδδδδδ   (16) 

After applying the commutation rule ( ) δδδ ⋅=⋅ TT , we get ( ) ( ) DBAICF +−= −1δδ . 

Example 5. Consider the system  
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which is, in fact, linear since ( ) ( )tuty =+ 2 . The state equations can be linearized by the state 
transformation ( ) ( ) ( )txtxt 121 =ξ , ( ) ( )txt 12 =ξ . Transfer function reads as 

 ( )
2

1

δ
δ =F  

Analogical ideas apply also to nonlinear continuous-time [5] and time-delay systems [7]. 

3.2 Transfer function algebra 
We can also introduce algebra of transfer functions of nonlinear systems. Each system 
structure can be divided into three basic types of connections: series, parallel and feedback, see 
Fig. 1. 

 

Figure 1:  Series, parallel and feedback connection of nonlinear systems  

 

For a series connection it follows that ( ) ( ) ( )AABBBB tuFFtuFty ddd == . Thus 

 AB FFF ⋅=   (17) 

For parallel and feedback connection we get 

 BA FFF +=   (18) 

 ( ) ABA FFFF ⋅⋅−= −11   (19) 

Note that due to the non-commutative multiplication (17) and (19) have to be kept exactly as 
they are. 

Following example demonstrates how to handle a series connection of two nonlinear time-
delay systems. It also serves as a motivation why to use the transfer function formalism in 
nonlinear systems. 

Example 6. Consider two systems 

 ( ) ( ) ( )1−= tutyty AAA&                               ( ) ( )tuty BB ln=  
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Transfer functions are following 
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The systems are combined together in a series connection. For the connection A → B, when 
( ) ( )tytu AB = , the resulting transfer function is 
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Hence, the connection A → B is linear from an input-output point of view ( ) ( )1−= tuty AB& . 
However, when the systems are connected as B → A, that is ( ) ( )tytu BA = , the result is 
different. 
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This time, it does not yield a linear system. Clearly, the fact that the associativity is not valid 
when systems are nonlinear is hidden in the transfer function algebra which is non-
commutative. 

Presented example serves also as a stepping stone to the controller design. Naturally, one can 
employ introduced transfer function algebra to design various types of compensators, for 
instance to solve the nonlinear model matching problem, as was already done in [9]. 
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5 CONCLUSIONS 

Transfer function formalism in nonlinear control systems is, in principle, similar to the linear 
theory. There are two main differences: the polynomial description relates now the differentials 
of system inputs and outputs and the resulting polynomial ring is non-commutative. Such a 
transfer function formalism has been already employed in [8] to study some structural 
properties of nonlinear systems, in [9] to study the nonlinear model matching problem, in [17] 
to study the observer design and recently in [18] to study the realization problem of nonlinear 
systems. 
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