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Abstract: In this paper, we propose a sliding mode technique to control the field-
oriented synchronous machine. The sliding mode controller is designed for a class of 
non linear dynamic systems to tackle the problems with model uncertainties, parameter 
fluctuations and external disturbances. Our aim is to make the position control robust to 
parameter variations. The use of the nonlinear sliding mode method provides very good 
performance for motor operation and robustness of the control law despite the 
external/internal perturbations. An observer is considered to overcome the problem of 
torque disturbance. A load torque observer is designed based on neural network 
technique without affecting the overall system response. Simulation results are given to 
highlight the performance of the proposed control technique under load disturbances and 
parameter uncertainties. 
 
Keywords: synchronous machine, sliding mode control, Neural load torque observer, 
position control. 

          
          
1  INTRODUCTION  

 
Since the work of V. I. Utkin proposed in 1977 [1], significant interest on variable 

structure systems (VSS) has been generated in the control research community worldwise. 
The variable structure control (VSC) possesses high robustness using the sliding mode control 
that can offer many good properties such as good performance against unmodelled dynamics, 
insensitivity to parameter variation, complete rejection of disturbances, and fast dynamic [2]. 

Sliding mode is originally conceived as system motion for dynamic whose essential open 
loop behavior can be modeled adequately with ordinary differential equations.  

Variable structure control (VSC) with sliding mode or sliding mode control (SMC), is one 
of the effective non linear robust control approaches since it provides system dynamics with 
an invariance property to uncertainties once the system dynamics reach the sliding surface [1, 
3, 4]. The main disadvantage of this approach is the high switching frequency of the control 
action or chattering that VSC system exhibit. Introducing a boundary layer (BL) is one of the 
most common techniques used, with the cost of an important degradation in tracking 
performance [5]. 

The new industrial applications necessitate speed/position variators having high dynamics 
performances, a good precision in permanent regime, and a high capacity of overload on all 
range of speed and a robustness to different perturbations. The variable structure control 
(VSC) possesses this robustness using the sliding mode control that can offer many good 
properties such as good performance against unmodeled dynamics, insensitivity to parameter 
variation, external disturbance rejection and fast dynamic. These advantages of sliding mode 
control can be employed in the position and speed control of a synchronous machine [1, 6-8]. 
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In this paper the application of sliding mode control in synchronous position control is 
described. The organization of this paper is as follows: in section 2, the vector control 
principle for synchronous motor drive is presented; in section 3, the proposed controller is 
described, and used to control the position synchronous motor, and by the way, a neural load 
torque observer is developed based on neural network. Simulation results are given to show 
the effectiveness of this controller and finally conclusions are summarized in the last section. 

 

2  SYNCHRONOUS MOTOR DYNAMIC MODEL 
2.1. Machine equations 

 
The more comprehensive dynamic performance of a synchronous machine can be studied 

by synchronously rotating d-q frame model known as Park equations. The dynamic model of 
synchronous motor in d-q frame can be represented by the following equations [9, 10]: 
 

fff

dsqsqsqs

qsdsdsds

t
iv

t
iv

t
iv

φ+=

φω+φ+=

φω−φ+=

d
dR

d
dR

d
dR

f

s

s

                                  (1) 

 
The mechanical equation of synchronous motor can be represented as: 
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Where the electromagnetic torque is given in d-q frame: 

 
( )dsqsqsdse iiT φ−φ= p                                    (3) 

 
In which: 
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The flux linkage equations are:  
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Where sR  – stator resistance, fR  – field resistance, qsds L,L  – respectively direct and 

quadrature stator inductances, fL  – field leakage inductance, fdM  – mutual inductance 
between inductor and  armature, dsφ and qsφ  – respectively direct and quadrature flux, fφ  – 
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field flux, eT  – electromagnetic torque, LT  – external load disturbance, p  – pair number of 
poles, B  – is the damping coefficient, J  – is the moment of inertia, ω – electrical angular 
speed of motor. Ω  – mechanical angular speed of motor, θ  – mechanical rotor position, eθ  –
electrical rotor position. 
 

2.2. Description of the system  
 
The schematic diagram of the position control system under study is shown in figure (1). 

The power circuit consists of a continuous voltage supply a three phase inverter whose output 
is connected to the stator of the synchronous machine [9]. The field current fi  of the 
synchronous machine, which determines the field flux level is controlled by voltage fv . The 
parameters of the synchronous machine are given in the Appendix.  

The self-control operation of the inverter-fed synchronous machine results in a rotor field 
oriented control of the torque and flux in the machine. The principle is to maintain the 
armature flux and the field flux in an orthogonal or decoupled axis. The flux in the machine is 
controlled independently by the field winding and the torque is affected by the fundamental 
component of armature current qsi . In order to have an optimal functioning, the direct current 

dsi  is maintained equal to zero [10, 11].  
Substituting (4) in (3), the electromagnetic torque can be rewritten for fi =  constant and 

0=dsi  as follow: 
 
( ) ( )titT qse λ=                            (5) 

 
where ffd ipM=λ . 

 
In the same conditions, it appears that the dsv  and qsv  equations are coupled. We have to 

introduce a decoupling system, by introducing the compensation terms demf  and qemf  in 
which 
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Figure (1) shows the schematic diagram of the position control of synchronous motor using 

sliding mode control. 
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Figure 1. System Configuration of Field-Oriented Synchronous Motor. 

 
The blocks SMCθ, SMCids et SMCiqs are regulators, the first is the sliding mode controller 

for position, the second is the sliding mode regulator for the direct current and the third is the 
sliding mode regulator for the quadrature current. The load torque is estimated by the “Neural 
load torque observer”. To avoid the appearance of an inadmissible value of current, a 
saturation bloc is used. 
 
2.3. Voltage inverter 

 
The power circuit of a three-phase bridge inverter using six switch device is shown in 

figure 2. The dc supply is normally obtained from a utility power supply through a bridge 
rectifier and LC filter to establish a stiff dc voltage source [12].  

 

 
Figure 2. Voltage inverter 

 
The switch Tci ( { } { }2,1,3,2,1 ∈∈ ic ) is supposed perfect. The simple inverter voltage can 

be presented by logical function connection in matrix form as [12]. 
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where the logical function connection Fc1 is defined as: Fc1 = 1 if the switch Tc1 is closed, 

Fc1 = 0 if the switch Tc1 is opened, cU  is the voltage feed inverter. 
 
 

3  SLIDING MODE CONTROL 
 

Consider a nonlinear system which can be represented by the following state space model 
in a canonical form [3, 13]: 
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where ( ) ( ) ( )[ ]Tn txtxtxx )1(... −= &  is the state vector, ( )( )ttxf ,  and ( )( )ttxg ,  are nonlinear 
functions, u is the control input, ( )td  is the external disturbances.  

The objective of the control is to determine a control law u(t) to force the system output 
y(t) in (8) to follow a given bounded reference signal yd(t), that is, the tracking error 
( ) ( ) ( )tytyte d −=  and its forward shifted values, defined as  
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should be small. 

The design of SMC involves two tasks. The first one is to select the switching hyperplane 
( )txs , to prescribe the desired dynamic characteristics of the controlled system. The second 

one is to design the discontinuous control such that the system enters the sliding mode 
( ) 0, =txs and remains in it forever [3, 14]. 

In this paper, we use the sliding surface proposed par J.J. Slotine,  
 

( ) ( )te
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n 1
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in which  ( ) ( )txtxe d −= , λ is a positive coefficient, and n is the system order.   

It remains to be shown that the control law can be constructed so that the sliding surface 
will be reached. Then, a sliding hyperplane S can be represented as ( ) 0, =txs .  

The scalar ( )txs , is defined as the distance to the sliding hyperplane S. 
 
Consider a Lyapunov function: 
 

2

2
1 sV =                                                            (11) 
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From Lyapunov theorem we know that if V&  is negative definite, the system trajectory will 
be driven and attracted toward the sliding surface and remain sliding on it until the origin is 
reached asymptotically [6]: 
 

ssV && =                                                                (12) 
 
The simplified 1st order problem of keeping the scalar ( )txs ,  at zero can be achieved by 

choosing the control law u(t). A sufficient condition for the stability of the system is  
 

ss
t

η−≤
∂
∂ 2

2
1                                                   (13) 

 
where η  is a positive constant. (13) is called reaching condition or sliding condition.  

If the control input is so designed that the inequality (13) is satisfied, together with the 
properly chosen sliding hyperplane, the state will be driven toward the origin of the state 
space along the sliding hyperplane from any given initial state. This is the way of the SMC 
that guarantees asymptotic stability of the systems. 

 The process of sliding mode control can be divided in two phases, that is, the approaching 
phase and the sliding phase. The sliding mode control law u(t) consists of two terms, 
equivalent term ueq(t), and switching term us(t). 

In the sliding phase, where ( ) 0, =txs and  ( ) 0, =txs& , the equivalent term ueq(t) is 
designed to keep the system on the sliding surface. In the approaching phase, where 
( ) 0, ≠txs , the switching term us(t) is designed to satisfy the reaching condition (13). 

While in sliding phase we have: 
 

( ) 0, =txs&                                                   (14)  
 
By solving the above equation formally for the control input, we obtain an expression for u 

called the equivalent control ueq. 
 In order to satisfy sliding conditions (13) and to despite uncertainties on the dynamic of 

the system, we add a discontinuous term across the surface ( ) 0, =txs , so the sliding mode 
control law u(t) has the following form:  
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where fK is the control gain.         
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The controller described by the equation (14) presents high robustness, insensitive to 

parameter fluctuations and disturbances [1, 3, 4, 15, 16], but it will have high-frequency 
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switching (chattering phenomena) near the sliding surface due to sgn function involved. 
These drastic changes of input can be avoided by introducing a boundary layer with width ε  
[3, 4, 16, 17]. Thus replacing ( )( )tssgn  by ( )( )ε/tssat  in (15), we have 

 
( )( )ε−= /, txssatKuu feq                                   (17) 

 
Where 
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3.1 Position Control    

 
The position error is defined by:  

 
θ−θ= refe              (18) 

 
For n=2, the position control manifold equation can be obtained from equation (10) as 

follows: 
 

( ) e
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The equation of the motion (2) can be rewritten: 
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During the sliding mode and in permanent regime, we have  

 
( ) ( ) 0,0,0 ==θ=θ n

sqiss &  
The current control iqs is defined by: 

 
n
qs
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In which:  
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( )( )Ω= ω sKi n
qs sgn             (25) 

  
Kω– positive constant. 
 
3.2. Direct Current Controller 

 
The direct current error is defined by: 

 
dsdrefd iie −=             (26) 

 
For n=1, the direct current control manifold equation can be obtained from equation (10) 

as follows: 
 
( ) dsdrefds iiis −=                        (27)  

( ) dsdrefds iiis &&& −=                        (28) 
 
Substituting the expression of ids given by equation (1) and (4) in equation (28) we obtain: 
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During the sliding mode and in permanent regime, we have  
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The control voltage vdref is defined by:  
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 Kd – positive constant. 

 
3.3. Quadrature  Current Control  

 
The quadrature current error is defined by: 

 
 qsrefqq iie −=                 (33) 
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For n=1, the quadrature current control manifold equation can be obtained from equation 
(10) as follows: 
 
 ( ) qsqrefqs iiis −=                                                                   (34)   

 
Then, we have  

 
( ) qsqrefqs iiis &&& −=             (35) 

 
Substituting the expression of qsi&  given by equation (1) and (8) in equation (35) we 

obtain: 
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During the sliding mode and in permanent regime, we have  

 
( ) ( ) 0,0,0 === n
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The control voltage vqref is defined by:  
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Kq – positive constant. 
 
 
4    LOAD TORQUE OBSERVER 
 

The motion equation of synchronous machine (2) can be expressed in state space as 
follows:  
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It is well known that observer is available when input is unknown and inaccessible. For 

simplicity a 0-observer is selected. In this paper, the load torque TL is estimated by using an 
observer. A linear asymptotic observer is designed in the same form as the original system 
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(40) with an additional input depending on the mismatch between the real values and the 
estimated values of the output vector [17, 18]. The system equation can be expressed as: 

)( XYuXX
))&) CLBA −++=              (41) 

Where ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

L
L

L  

 
Where X

)
 is an estimate of the system state vector, and L is the proportional gain vector to 

be chosen so as to achieve prespecified error characteristics.  
The motion equation with respect to mismatch XXX −=

)~  is of form 

( )XX ~~ LCA −=&                                      (42) 

The behavior of the mismatch governed by homogeneous equation is determined by the 
eigenvalues of the matrix ( )LCA − . For the observable system they may be assigned 
arbitrarily by a proper choice of the gain vector L. It means that any desired rate of 
convergence of the mismatch to zero or estimate  )(tX

)
 to the state vector )(tX may be 

provided. To ensure that the observer is stable the instantaneous eigenvalues of the observer 
have to be placed in the left half side plane. The characteristics equation is given by: 
 

( )[ ] 0=−− LCAIpDet                       (43) 
 
Where I is the identity vector, and p is the Laplace operator. 
The gain vector L is defined by imposing the poles in the characteristics equation. 
 
 
5  DESIGN OF A NEURAL NETWORK LOAD TORQUE OBSERVER 
 
Artificial Neural Networks (ANN’s) are potential candidates for approximating complex non-
linear process dynamics and have been used to formulate a variety of control strategies. 
In this section, a Multi Layer Perceptron (MLP) neural network is applied to load torque 
observer identification. The neural network observer is trained to approximate the load torque 
observer described in section 4. 

 

 
-a- 
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-b- 

Fig. 3. Supervised training of artificial neural networks: a) identification of the load torque 

observer; b) structure of ANN 

 
Figure (3-b) shows the structure of a feedforward multiplayer network with two input and 

two output signals. The topology is based on Perceptron which was proposed by Rosenblatt in 
1958.  

The network has three layers, defined as input layer, hidden layer, and output layer. The 
nodes represent neurons and the dots in the connections represent the weights. The summing 
nodes accumulate all the input weighted signals and then pass to the output through the 
transfer function [19]. The transfer function most commonly used is the sigmoidal transfer 
function, and it is given by 
 

xe
Y α−+
=

1
1              (44) 

 
where α is the coefficient or gain which adjusts the slope of the function. With high gain, 

this function approaches a step function. 
 

Back-Propagation training algorithm is most commonly used in a feedforward neural 
networks as mentioned before. Figure (4) shows the principle of back-propagation training. 

 

 
  

Fig. 4.  Principle of  Back-Propagation training. 
 

In the beginning, the network is assigned random positive and negative weights. For a 
given input signal pattern, step by step calculations are made in the forward direction to 
derive the output pattern. A cost functional given by the squared difference between the net 
output and the desired net output for the set of input patterns is generated and this is 
minimized by gradient descent method altering the weights one at time starting from the 
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output layer. For the input pattern p, the squared output error for all the output layer neurons 
of the network is given as 
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Where p
jd  is the desired output of the jth neuron in the output layer, p

jy is the corresponding 
actual output, S is the dimension of the output vector, y p is the actual net output vector, and 

pd  is the corresponding desired output vector. The total squared error E for the set of P 
patterns is then given by   
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The weights are changed to reduce the cost functional E in a minimum value by gradient 

descent method, as mentioned. The weight update equation is then given as 
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Where η is the learning rate, )1( +tW ji is the new weight and )(tW ji  is the old weight. The 
weights are updated for all the P training patterns. Sufficient learning is achieved when the 
total error E summed over the patterns falls below a prescribed threshold value. The iterative 
process propagates the error back-propagation [19, 20, 21]. 

 

6   SIMULATION AND RESULTS 
 
In this section, we simulate the system described in figure (1). The position and currents 

loops of the drive were also designed and simulated respectively with sliding mode control. 
The feedback control algorithms were iterated until best simulation results were obtained. 

The position loop was closed, and transient response was tested with both current 
controller and position control. The simulation of the starting mode without load is done, 
followed by reversing of the reference rad/s3±=θref  at t3=2s. 

The load ( LT ) is applied in two period: 
1. The reference rad3+=θ ref , the load ( Nm8+=LT ) is applied at t1 = 1 s and eliminated 

at t2 = 1.5 s 
2. The reference rad3−=θ ref , the load ( Nm8−=LT ) is applied at t4 = 3 s and eliminated 

at t5 = 3.5 s.  
The simulation is realized using the SIMULINK software in MATLAB environment.  
Figure (5) shows the performances of the sliding mode controller. 
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-a- 

 
Fig. 5. Simulation results of position controller: a- Response of the system; b- Response of 

the Neural load torque observer (input: 2, hidden layer: 4-10, output: 1) . 
 
The control presents the best performances, to achieve tracking of the desired trajectory. 

The sliding mode controller rejects the load disturbance rapidly with no overshoot and with a 
negligible steady state error. The current is limited in its maximal admissible value by a 
saturation function. The decoupling of torque-flux is maintained in permanent regime. The 
neural load torque observer is used successfully without affecting the system response.     
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Robustness 
 
In order to test the robustness of the used method we have studied the effect of the 

parameters uncertainties on the performances of the position control. We have simulated the 
system with different values of the parameter considered and compared to nominal value (real 
value).  

Two cases are considered: 
1. The moment of inertia ( ±50%).  
2. The stator and rotor resistances (+80%). 
To illustrate the performances of control, we have simulated the starting mode of the motor 

without load, and the application of the load ( Nm8+=LT ) at the instance t1 = 1 s and it’s 
elimination at t2 = 2 s; in presence of the variation of parameters considered (the moment of 
inertia, the stator resistances) with position step of +3 rad/s.  

Figure (6) shows the tests of robustness realized with the sliding mode control for 
different values of the moment of inertia. 

  
 

 
Fig. 6. Test of robustness for different values of the moment of inertia: 1) – 50%,  2) nominal 

case,  3) +50%. 
 

Figure (7) shows the tests of robustness realized with the sliding mode control for 
different values of stator and rotor resistances. 
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Fig. 7. Test of robustness for different values of stator and rotor resistances: 1) nominal case, 

2) +80%. 
 
For the robustness of control, a decrease or increase of the moment of inertia J, the stator 

resistances doesn’t have any effects on the performances of the technique used (Figures 6 and 
7). An increase of the moment of inertia gives best performances, but it presents a slow 
dynamic response (Figure 6). The sliding mode control gives to our controller a great place 
towards the control of the system with unknown parameters. 

 
 

7   CONCLUSION 
 

In this study, a numerical simulation of the vector control of the self controlled 
synchronous motor is done using a sliding mode control. The paper develops a simple robust 
controller to deal with parameters uncertain and external disturbances and takes full account 
of system noise, digital implementation and integral control.  

A neural load torque observer is developed and used successfully.The global system with 
load torque observer was analyzed and designed, and performances were studied extensively 
by simulation to validate the theoretical concept. The simulation study clearly indicates the 
superior performance of the sliding mode control, because it is inherently adaptive in nature. 
It appears from the response properties that it has a high performance in presence of the plant 
parameters uncertain and load disturbances. The control of position by SMC gives fast 
dynamic response with no overshoot and negligible steady-state error. With good choice of 
control parameters, the chattering phenomena is minimized, the torque fluctuations are 
reduced, the limitation of the current is ensured by a saturation function. 
 
 
APPENDIX  
 
Three phases SM parameters: 
Rated output power 3HP, Rated phase voltage 60V, Rated phase current 14 A, Rated field 
voltage vf =1.5V, Rated field current if =30A, Stator resistance sR =0.325Ω, Field resistance 

fR =0.05Ω, Direct stator inductance dsL =8.4 mH, Quadrature stator inductance qsL =3.5 mH, 
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Field leakage inductance fL =8.1mH, Mutual inductance between inductor and  armature 

fdM =7.56mH, The damping coefficient B =0.005 N.m/s, The moment of inertia J =0.05 
kg.m2, Pair number of poles p = 2. 
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