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Abstract 
 

The kinematics problems of redundant robots have been investigated for many years. Plenty of different 
applications for robot redundancy were implemented with success. Some of them were: improvement of 
redundant robot manipulability, robot obstacle avoidance, robot energy consumption optimization etc. Widely 
used methods use conventional approaches as for example in case of manipulability enhancement is used the 
gradient computation. However, the computational effort of these approaches brings many difficulties when it is 
used with other constraints. The solution to these problems is implementation of new intelligent methods based on 
artificial neural networks. This paper deals with application such methods where CMAC and HCMAC 
(Hierarchical Cerebellar Model Arithmetic Controller) neural networks were used in redundancy control of 7 
DOF redundant manipulator. And manipulability enhancement constraint was chosen as redundancy constraint. 
First tested neural network was conventional CMAC neural network with supervised learning. It performed well 
in the terms of fast learning and local generalization capability. Nevertheless, the conventional CMAC has 
showed enormous memory requirement. Another tested neural network for the same task was HCMAC. It is 
shown that HCMAC perfectly approximated the testing function with relatively fast learning.  
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1   INTRODUCTION 

Today, robotic manipulators are important devices in many different industries. The control of 
manipulator involves trajectory planning, inverse kinematics and dynamics etc. Among these control 
problems the kinematics control of redundant manipulator is the interest of this paper. [1] Kinematical 
redundant robots are of special interest due to their redundancy that can be used for additional tasks: 
avoiding obstacles, singularities, manipulability enhancement etc.  

The inverse kinematics of redundant robots can be solved with many different approaches. One of the 
main algorithms widely used is the Jacobian Pseudoinverse algorithm. This algorithm allows the 
manipulator to satisfy the additional constraints through mapping the velocities corresponding to the 
additional constraints to the null space motions, while end-effector tracks the desired trajectory. 
Additional constraints can be either computed using conventional optimization techniques or using 
artificial neural networks. Between different types of neural networks CMAC neural network fits best 
the requirements. 

CMAC neural-network was first introduced by J. Albus in 1975 [2]. With its fast learning, good 
generalization capability, and easy of implementation by hardware CMAC has been applied in many 
real-world applications such as robotic control, signal processing, pattern recognition etc. [3-5]. 
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Previous CMAC studies have mainly focused on how to develop CMAC learning algorithms [6], 
improve the CMAC topology structure [7], and select learning parameters [8]. Besides the convergence 
property has also received considerable attention, when Wong and Sideris [16] proved that CMAC’s 
learning always converges with arbitrary accuracy on any sets of training data. Moreover, it was proved 
that CMAC learning results in a least square error if the number of iteration approaches to infinity and 
the learning rate approaches to zero. When the system requires derivative information of input and 
output variables, nonconstant differentiable Gaussian basis function was applied to CMAC. Lane et al. 
[7] developed a higher order CMAC neural network by using B-Spline receptive field function in 
conjunction with a general CMAC weight addressing scheme.  

Nevertheless, CMAC based on Albus model has two major limitations: enormous memory requirement 
for resolving high-dimensional problems and difficulty in adjusting memory structure parameters [15]. 
The memory size requirement limits application fields of CMAC in real-world applications. In many 
cases this problem of memory requirements can be solved with hash-coding. This method associates 
several hypercubes to the same weight. In such a case, although the memory requirements can be 
reduced, it may frustrate convergence Moreover it may also affect the speed of convergence and 
degenerate the behavior of convergence.  

To reduce enormous memory requirement, Lin and Li [8] presented a unique learning structure 
composed of small two-dimensional CMACs to solve high-dimensional problems. However, their 
proposed structure has its limitations. Many parameters have to be obtained heuristically to get a good 
learning capability for nonlinear functions. This results to high dependence on parameter determination 
and if the architecture is not properly considered the network does not work well.  

In this paper we propose HCMAC (Hierarchical CMAC) neural network. This type of neural network 
can effectively overcome the enormous memory requirement problem in original CMAC model, 
because the new structure can partition high-dimensional problems into smaller two-dimensional 
subproblems. Also presented herein is gradient-descent learning rule to train the proposed HCMAC 
model. To solve the problem of redundancy control with artificial neural networks, both CMAC and 
HCMAC neural networks were applied to model the manipulability enhancement function. The results 
of this application were then compared in several criteria: memory requirements, speed of computation, 
accuracy.  

This paper is divided into 5 sections, where the section II describes the inverse kinematics and 
manipulability measure. In the section III is shown the structure of CMAC and HCMAC neural network. 
Section IV presents the verification results of these neural networks on modeling manipulability 
gradient of 7 DOF redundant manipulator model. And the last section V summarizes all achieved 
results. 
 

2   REDUNDANT ROBOT KINEMATICS 

A Pseudoinverse kinematics 

Since the manipulator is redundant )( mn > , the Jacobian matrix is not square. Kinematics equation is 
solved by pseudoinverse of the Jacobian matrix that locally minimize the norm of joint velocities. 
Kinematics equation is then transformed in: 

)())(()( txtqJtq && +=                          (1) 
with the pseudoinverse Jacobian matrix: 

1)( −+ = TT JJJJ .  (2) 
Furthermore, 
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)()()())(()( tqJJItxtqJtq a&&& ++ −+=         (3) 

where aq&  is a vector of arbitrary joint velocities projected in the null-space of J . The vector aq&  
specifies the additional constraints for the redundancy. For the Jacobian pseudoinverse computation is 
the Moore-Penrose pseudoinverse method used. 
 

B Redundant robot manipulability 

As it is mentioned before, robot joint variables are denoted by n-dimensional vector q . It is then 
considered the set of all realizable end-effector velocities which Euclidean norm of q& , 

2/122
2

2
1 )...( nqqqq &&&& +++= ,  (4) 

satisfies 1≤q& . This set is an ellipsoid in the m-dimensional Euclidean space (m is the dimension of end-
effector position and orientation vector). In the direction of the ellipsoid major axis the end-effector can 
move at high speed. On the other hand, in the direction of the minor axis the end-effector can move only 
at low speed. If the ellipsoid is almost a sphere, the end-effector can move in all directions uniformly. 
This ellipsoid is called manipulability ellipsoid. 

One of the representative measures for the ability of manipulation derived from the manipulability 
ellipsoid is volume of the ellipsoid. This is given by wcm  where mc  is constant and: 

mw σσσ ...21=   (5) 
where the scalars mσσσ ,,, 21 K  are singular values of J . Variable w  is called the manipulability measure 
for configuration q  of the manipulator. The manipulability measure w  has the following properties [11]  

I. ))()(det( qJqJw T=     (6) 
II. When nm = , that is when we consider non-redundant manipulators, the measure w reduces to: 

))(det( qJw =           (7) 
III. Generally 0≥w  holds, and 0=w  if and only if mqJrank ≤))(( , that is the manipulator is in a 

singular configuration. From this fact we can regard the manipulability measure as a kind of 
distance of the manipulator configuration from singular ones. 

The increase of the manipulability measure during the robot movement can’t influence the desired end-
effector movement. For this purpose vector aq&  is used, because it is projected with )( JJI +−  into the null 
space and it doesn’t affect the end-effector motion. If the null space motion of the robot should increase 
the manipulability measure the vector aq&  has to be equal to: 

)(qHqa ∇=&         (8) 
where )(qH  is the objective function (manipulability measure) in the optimization process, and )(qH∇  is 
the gradient of the manipulability measure w . 
 

3   CMAC and HCMAC neural network 

To derive the HCMAC neural network, we first briefly introduce the CMAC neural network based on 
different basis function. 
 

A  CMAC neural network 

CMAC neural network is a look-up table neurocomputing technique to approximate any nonlinear 
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function with fast learning and good local generalization. Part of the neural network is basis function 
that influences the behavior of the network. The basic type commonly used is the constant basis function 
that is usually implemented in association memory selection.  

Before applying basis function, the input data of each state variable must be quantized into discrete 
regions. The number of discrete regions is termed as a resolution. Each input data can be mapped to 
several actual memory units via an association memory selection vector.  

These mapped actual memory units are called hypercubes. That means each input data is mapped on 
several different layered hypercubes. 

The actual output for an input state is obtained as the sum of stored contents for hypercubes covering the 
state. That is, the actual output of a specific input state s can be mathematically expressed as follows: 

∑
=

==
hN

j
jj

T wsawsasy
1

)()()(   (9) 

where w=[w1, w2,….,wNh]T is the vector of actual memory contents, Nh is entire memory size, aT=[a1(s), 
a2(s),…, aNh(s)]  is the memory selection vector.  

The conventional CMAC uses a supervised learning approach to adjust the weight values during each 
learning cycle. Its learning rule can be described as follows: 

))()(ˆ)(( 11 −− −+= t
T

e
tt wsasysa

N
ww α

  (10) 

where wt is the vector of actual memory contents at time t, wt-1 is the vector of actual memory contents 
at previous time t-1, α  is learning rate, )(ˆ sy  is the desired output value, and 1)()(ˆ −− t

T wsasy  is the error 
for the input training state s.  

The nondifferentiable property leads to some limitations when using conventional CMAC in real-world 
application. Therefore, the constant basis function is replaced by differentiable function as for example 
Gaussian basis function. Mathematical formulation of one-dimensional Gaussian basis function φ  is 
described as follows: 

2)/)(()( σφ mses −−=   (11) 
where m is a hypercube center, σ  is a hypercube radius, and s is a specific input state. The output of 
CMAC neural network with Gaussian basis function with Nv dimensional problem is revised to be as 
follows: 
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where aj(s) is the jth element of association memory selection vector for a specific input space s, wj is the 
jth memory allocation of actual memory, si is the input value of ith dimension for a specific input state s, 
mji is the corresponding hypercube center, and jiσ  is the corresponding hypercube radius. The CMAC 
with a Gaussian basis function as a nonconstant differentiable basis function is termed as GCMAC. 
 

B HCMAC neural network 

HCMAC neural network consists of two-dimensional differentiable GCMACs. Fig. 1 illustrates the 
smallest topology of the HCMAC neural network, indicating that each GCMAC includes two input 
values, and the output values of first-layer GCMACs serve as input values of the second-layer 
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GCMACs.  

 

 
 

Fig. 1 Topology of HCMAC neural network structure 
 

In Fig. 1 the structure of HCMAC contains four inputs si where si(i=1,2,….,4)  represents ith input value, 
yj(j=1,2) is the jth output of the hidden layer, and y(s)  is the output of the whole HCMAC neural 
network for a specific input state s. HCMAC neural network splits problem of four input values into a 
problem of two two-dimensional GCMACs. 

The learning method for training HCMAC neural network was gradient descent method. At first, the 
error cost function E is defined as: 

2))()(ˆ(
2
1 sysyE −=   (13) 

where )(ˆ sy  is the desired output value of HCMAC neural network for input state s, and y(s) is the actual 
output of  the HCMAC neural network for this input state. In the GCMAC neural network equation are 
three parameters that have to be tuned during the learning process: weight w, radius σ  and center m. 
First, the output layer GCMAC is trained, where the updates for the GCMAC parameters are as follows: 
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where jw∆  is the updated weight value of the jth actual memory in the GCMACA, wj is the weight value 
of the jth  actual memory, α is a learning rate, and Ne is the number of mapped hypercubes for input state 
s. 
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where jiσ∆  is the updated radius of the ith  dimension for jth mapped hypercube of  input state s in the 
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GCMACA, jiσ  is radius of the ith  dimension for jth mapped hypercube of  input state s.  
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where jim∆  is the updated center value of the ith  dimension for jth mapped hypercube of  input state s in 
the GCMACA, jim  is radius of the ith  dimension for jth mapped hypercube of  input state s. The 
parameters in  GCMACB and GCMACC are updated according to the conventional backpropagation rule, 
where using the derivatives information 1/ yy ∂∂  and 2/ yy ∂∂  is the error backpropagated to GCMACB 

and GCMACC. 

 

4   EXPERIMENTS 

The goal of CMAC and HCMAC neural networks in this paper is to replace the conventional 
manipulability gradient computation function. In order to test the control system with these neural 
networks, the kinematics of 7-DOF redundant robotic system model was taken. The model of the robot 
is shown in Fig. 2. 

 
Fig. 2 Model of 7 DOF redundant manipulator 

 

The control platform for testing neural networks was Euclidean space position control system; it can be 
seen in the Fig. 3. Input to the control system is the desired position and the output is actual robot end-
effector position.  

 

Fig. 3 Position control scheme with null-space motion and CMAC training 
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As can be seen from the figure the pseudoinverse kinematics (3) was used for computation the desired 
robot joint velocities. Apart this, the null-space motion is added for redundancy control. The 
optimization function for redundancy is manipulability measure. During the whole motion of the end-
effector is neural network on-line trained. It learns the gradient values of manipulability measure. The 
neural network needs 7 input values (robot joint positions) and 7 output values. The conventional 
CMAC neural network allows multiple inputs and multiple outputs, where each output is computed from 
its own memory. On other hand, HCMAC neural network needs to implement appropriate GCMACs 
according to the number of inputs. It can be done either using full binary tree approach, or it can be 
optimized according to the input requirements. In this paper we have optimized the structure of full 
binary tree to get a minimum number of GCMACs. To implement 7 outputs to HCMAC structure the 
output GCMACA was extended with 6 more memories to store the other 6 output values. Fig. 4 shows 
this structure with 7 inputs and 7 outputs. 

 
Fig. 4 Optimized HCMAC neural network structure for 7 inputs and 7 outputs. 

 

As described earlier the control algorithm controls the robot to achieve the goal position from the 
starting position. During the motion are the redundant joints controlled to fulfil additional tasks. The 
end-effector starting position was set to (0.1455, 0.6588, 1.3896) and the goal position (0.25, 0.15, 0.5). 
The simulation time was set to 5 seconds.  

A  Simulation results 

First tested neural network for manipulability modeling was the conventional CMAC neural network 
with Gaussian basis function. The learning process of this neural network was made online during the 
robot motion from starting point to finish point. After 10 training cycles CMAC replaced the gradient 
computation and the system was tested with this neural network. Fig. 5 shows the comparison of 
manipulability measure between CMAC neural network and original gradient computation. From the 
figure can be seen that CMAC neural network very good approximates gradient computation and 
therefore manipulability measure results are almost the same.  

To measure the exact approximation performance an integral absolute error (IAE) was computed. It was 
defined as: 

dttwtwIAE
T

∫ −=
0

21 )()(   (16) 

where 1w  and 2w  are the manipulability measures for the case of CMAC and the original gradient 
computation. 
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Computed IAE in this simulation was 0.0744 what is 7.44*10-5 per one training sample. Time response 
of CMAC gradient computation and conventional gradient computation can be seen in Fig. 5. This 
figure shows that CMAC very good approximates all elements of the manipulability gradient vector. 
Each curve represents one element of gradient vector. 

 

 
Fig. 5 Manipulability measure with CMAC gradient computation after 10 trainings 

 

 

Fig. 6 Gradient computation comparison after 10 training cycles 
 

The second tested neural network was HCMAC neural netowork. The same training samples were taken 
as in the case of CMAC neural network. After the training, HCMAC neural network also replaced the 
original gradient computation in the control scheme. Then it was compared to the conventional 
approach. Fig. 7 shows the results.   

As can be seen from this figure HCMAC neural network approximates the manipulability measure 
better then CMAC neural network. The total computed IAE for this approximation was 0.0028, what is 
2.8*10-6 per one training sample. The exact approximation of manipulability gradient vector is shown in 
Fig. 7. From this figure can be seen that all gradient vector elements were approximated better than in 
the case of CMAC. This figure also shows that HCMAC neural network output function is much 
smoother than CMAC neural network. That is, because of better distribution of 7 inputs between 
GCMACs. 
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Fig. 7 manipulability measure with HCMAC gradient computation 

 

 
Fig. 8 Manipulability measure with CMAC gradient computation after 10 trainings 

 

The next tested property was the speed of computation. The comparison was made between HCMAC, 
CMAC neural network and conventional gradient method. For this experiment were randomly chosen 
100 and 1000 robot configurations for which the gradient was computed. For these configurations were 
computed the gradient outputs and the time of computation was measured. In table I. are presented the 
results of this testing. 

 
Number of computations Gradient in [s] CMAC in [s] HCMAC in [s] 

100 0.1250 0.0310 0.09852 

1000 1.0935 0.2580 0.86217 

Tab 1. Gradient computation speed comparison 
 

From the results can be seen that CMAC and HCMAC neural network computes the gradient faster than 
the original gradient method. This is an advantage in using neural network as an learnable alternative to 
the conventional computation.  

CMAC or HCMAC neural network can be used as an alternative to the commonly used computation 
method. It can even compute the outputs faster than the original one. This can be effectively utilized in 
redundant robot kinematics control, where every spare of computation time is an advantage and can be 
used for other additional tasks. From the comparison of approximation properties can be seen than 
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HCMAC has better approximation results. Besides, HCMAC has lower memory requirements than 
CMAC. CMAC neural network was unable to implement with 7 inputs without using of hashing 
algorithm that reduced the memory requirements. But hashing algorithm brings errors in output 
computation and it shrinks the input space coverage.  

HCMAC neural network covers the whole input space. The disadvantage of HCMAC using is that 
HCMAC neural network needed more computation and learning time than CMAC.  
 

5   CONCLUSION 

In this paper we proposed usage of CMAC and HCMAC neural network for manipulability gradient 
modeling. We tested possible replacement of the original gradient computation method. Inverse 
kinematics control simulation of 7 DOF redundant robot has shown, that CMAC and HCMAC can 
replace the original computation method with very good results. The neural networks were compared 
with conventional gradient method. Testing results showed us that HCMAC can better approximate 
gradient computation, but the computation time of one output value was higher than in the case of 
CMAC. Both neural networks showed that they can compute the gradient faster than the original 
method. Moreover, in cases where the redundant robot control system needs some spare of computation 
time, this can be the way how to succeed.  
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