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Abstract 

The main drawback of ‘conventional’ fuzzy systems is the inability to automatically design and maintain 
their knowledge base. To overcome this disadvantage many types of extensions adding the adaptivity 
property to those systems were designed. This paper deals with the so-called direct adaptation methods of 
fuzzy control design and especially, with two ones of them: an improved, the so-called, self-organizing 
fuzzy logic controller designed by Procyk and Mamdani as well as a new hybrid adaptation structure, called 
gradient-incremental adaptive fuzzy controller connecting gradient-descent methods with the first type. Both 
types of adaptive fuzzy controllers are shown on design of an automatic pilot and control of LEGO robots. 
The results and comparisons to a 'conventional' (non-adaptive) fuzzy controller designed by a human 
operator are shown, too.  

Keywords: adaptive fuzzy controller, gradient-descent methods, Procyk-Mamdani adaptation, incremental 
models 

1 INTRODUCTION 
Fuzzy logic has found many successful applications, especially in the area of control, but there are 
some limits of its use that are connected with the inability of knowledge acquisition and adaptation 
to changed external conditions or parameters of the controlled system. To overcome this problem 
there were published lots of papers, e.g. [1, 5, 7, 12], which deal with structures of Adaptive Fuzzy 
Controllers (AFC) using mostly approaches based on many variations of gradient-descent methods, 
the least square method [11], linear and non-linear regression [14] or linguistically based rule 
extraction.  

For the sake of completeness it is necessary also to mention other very perspective means of 
computational intelligence as neural networks [10], genetic algorithms [4] or migration algorithms 
[15] (both as parts of evolutionary computing) whose hybridisation leads to neuro-fuzzy and genetic 
fuzzy systems. However, their computational efforts do not yet enable their use in practical 
applications. 

Further, we will focus our attention only on direct AFC. The main reason why to deal with this type 
of AFC is that they are in their nature and calculus the most similar systems to the non-adaptive 
(conventional) FC. The properties of FC are well known, more than in the case of neural networks 
or genetic algorithms, in general. Fuzzy logic is able to simulate the human vague thinking very 
efficiently and therefore it seems to be very advantageous only to add the ability of knowledge 
acquisition to 'conventional' fuzzy systems and to preserve their properties, too. 

In this paper we will describe and analyse the so-called Self-Organizing Fuzzy Logic Controller 
(SOFLC) proposed by Procyk and Mamdani [12], which was modified in many papers, e.g. [9, 11]. 
Further, its modification and implementation will be shown on two examples: automatic pilot and 
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control of LEGO robots. Results of experiments with these systems are summarized in the 
concluding part of this paper. 

2 STRUCTURE OF SOFLC 
SOFLC (see fig. 1) belongs to the so-called performance-adaptive controllers, which evaluate the 
control quality by a criterion (or more criteria) like transition time, energy consumption, overshoots, 
etc. Such a quality measure is called performance measure p(k). 

 

Figure 1: Structure of a self-organizing fuzzy logic controller. 
 

Control criteria are contented in the performance measure block, where the quality is evaluated by 
p(k), which expresses the magnitude and direction of changes to be performed in the knowledge 
base of the controller. The basic design problem of AFC consists in the design of M, where for each 
time sample t=K.T (K=0,1, …) a simplified incremental model of the controlled system M=J.T (J 
– Jacobean, T – sampling period) is computed. It represents a supplement to the original model and 
is analogous to the linear approximation of the first order differential equation or in other words to 
gradients, too. As Jacobean (1) is a determinant of all first derivatives of a system with n equations 
f1, …, fn of n input variables x1, …, xn it means J is equal to the determinant of the dynamics matrix, 
i.e. it is a numerical value describing all n gradients in the sense of a characteristic value: 
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Now we need to transform this incremental description of a controlled system to the description of a 
controlling system, i.e. a controller. Considering the properties of the feed back connection we can 
see that y(k) ≈ e(k) (w(k) is known). As inputs and outputs of a controlled system change to outputs 
and inputs of a controller, respectively we can get the controller description like an inverse function 
of y(k) = fM(u(k)), i.e. the model of the controller is in the form u(k) = f -1

M(y(k)). Because J is a 
number, then M-1 is a reverse value of J.T. The reinforcement value r(k) is computed as r(k) = M-

1.p(k) and represents the correction of the knowledge base. 

Let the knowledge base in the time step k of such AFC be R(k) and let its modification in the next 
time step be R(k+1). The general adaptation rule can be described like:  

 )())()(()1( kRkRkRkR newbad ∪∩=+ .  (2) 

We see, firstly, the part of knowledge Rbad(k) that caused the low quality control is removed from 
R(k) and then it is completed by new knowledge Rnew, which is corrected by r(k). Rbad(k) and Rnew 
are computed as follows: 

 ))(())(())(()( ***
1 kufuzzxkxfuzzxxkxfuzzkR nbad K= ,  (3) 

 ))()(())(())(()( ***
1 krkufuzzxkxfuzzxxkxfuzzkR nnew += K ,  (4) 

where x1, …, xn are states of the controller, u(k) is its output and * denotes these values are crisp (to 
protect possible misunderstanding). The only difference between Rbad(k) and Rnew(k) is in  
consequent parts of IF-THEN rules, i.e. in the output, which confirms the role of r(k) as a correction 
value. The implementation of the knowledge base adaptation can be either rule-based or relation-
based and will be explained in next sections. In the following section some properties of SOFLC 
will be described. 

2.1 Advantages and drawbacks of SOFLC 
It seems to be reasonable to look for methods that would minimize deviations from the optimal state 
as quickly as possible. Therefore gradient-based methods should be the most convenient for the 
knowledge modification. In such a sense SOFLC is also a special form embedding this calculus 
since it utilizes Jacobean, as seen in (1). The only fundamental difference between SOFLC and 
'conventional' gradient-descent methods (GDA) can be described as follows. SOFLC represents 
gradient of behaviour and 'conventional' gradient methods can be related to the gradient of the 
knowledge base. In other words, SOFLC directly calculates the derivative of the system behaviour, 
i.e. its change and 'conventional' gradient methods compute the change of the control error in 
dependence on the knowledge base parameters. From this reason there is a close relation between 
gradient of behaviour and gradient of the knowledge base but no equivalence, rather resemblance or 
similarity ( ≈ ). 

Although GDA should be the fastest adaptation but two basic problems are related to it. Firstly, the 
error function E(k) is unknown in advance and it may be of a complex shape with a number of local 
minima. It is very difficult in advance to estimate their number and possible place of the global 
minimum, i.e. optimal solution. Further, the absence of such estimation disables the determination 
of the learning factor value, too. If it is too small the convergence will be too slow and if it is too 
great there will be a risk the global minimum will be 'jumped over'. Secondly, there is possibility to 
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minimize only one criterion – error function E(k) but in the practice there are also other control 
criteria. SOFLC overcomes these problems partially and is more practice-oriented because it is able 
to involve other criteria, too. However, it is sensitive to external signals such as disturbances, noises 
and set-point changes [9, 11] because it is not able to distinguish whether the parameters of the 
controlled system are changed or an external signal entered the system. A negative effect will occur 
if the adaptation proceeds although it is not more necessary. In such a way some wrong changes in 
the knowledge base may be performed (e.g. an external error occurs and AFC will evaluate it as a 
parameter change). In [11] it is shown that adding some supervisory rules may solve this problem. A 
modification of SOFLC in the form of the so-called sliding mode control is made in [9] where not 
only the positions of the control error e(t) but also its change (the first derivative) are taken into 
consideration. This method needs complete knowledge about the states of the controlled system and 
proper design of the sliding hyper-plane. However, how to design a 'good' hyper-plane it is not 
solved in this approach. Further, the only criterion for the controller design is the control error. It is 
of course important that its value converges to zero but in many applications also another criteria 
may be still more important. From this reason we proposed a modification of this method, which is 
discussed in section 4. Further, we proposed a hybrid structure merging both SOFLC as well as 
GDA to balance their properties. This structure is described in the section 3. 

3 RULE-BASED IMPLEMENTATION OF SOFLC 
As already mentioned in the section 2, the knowledge base R(k) can be described in two 
fundamental ways: rule-based and relation-based. In the first case there is a set of fuzzy IF-THEN 
rules and a set of defined linguistic terms in the form of membership functions. Let us denote such a 
set of rules in this section R(k), too. R(k) is the set of Nr fuzzy rules rp (p=1, …, Nr) of n inputs and 
one output. Such a rule rp represents the Cartesian product of these input/output variables and is also 
a fuzzy relation Rp=A1,p x … An,p x Bp, where A1,p, …, An,p are linguistic values of x1, …, xn for the p-
th rule and Bp represents its output. The knowledge base R(k) is then a union of such rules (fuzzy 
relations) and after substituting into (2) it will be changed to (5): 
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Rbad(k) can be a union of all previously fired rules, too. However, for the sake of simplicity we will 
consider only one rule with the greatest strength α and therefore A1

bad x … x An
bad is its premise. The 

reinforcement value r(k) corrects only the consequent of such a rule and Bnew is the fuzzified result 
of u(k)+r(k), i.e. fuzz(u(k)+r(k)). The simplest fuzzification is in the form of singletons but in 
general, other forms are possible, too.  

In (5) following drawbacks can be seen: 

1. Possibility to change only one rule in one step - The adaptation process will be longer and it 
is possible the low control quality was not caused by the rule with the greatest strength but 
by another rules working as noise. In every case the convergence will be worse. 

2. Growth number of rules Nr(k+1) - Let us consider 4 rules with two inputs and one output 
then there will be 13 rules in next step, which leads to an enormous growth of rules in steps 
k+2, k+3, etc. (Nr(k+1)=Nr(k).(n+1)+1). 

3. Need of garbage collection - Previous two points show us such filtering or 'garbage 
collection', i.e. removing useless rules, is necessary to prevent the computational complexity 
and to improve the adaptation convergence. 
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Summarising the mentioned facts in the above we can see that GDA and relation-based 
implementation of SOFLC are with their properties more complementary than contradictory and 
therefore trying to utilise their advantages a new special hybrid connection of these two methods 
was proposed as seen in fig. 2. 

 

Figure 2: Hybrid control structure of a gradient-descent adaptation system and SOFLC. 

The adaptation process can be described in following steps: 

1. Defining input and output variables. 

2. Defining term sets for variables in the step 1. 

3. Designing initial membership functions (not necessary). 

4. Processing GDA until the prescribed threshold of the control error e(k) is reached. 

5. If e(k) is under such a threshold then processing SOFLC otherwise jump (switch) to the step 
4. 

The main idea is that GDA will be the fastest method if the threshold of the control error as the 
most important criterion is not too strict. In such a case we can choose a greater learning factor and 
speed up the adaptation. After this 'rough' adaptation we can switch the control to SOFLC to 
minimize the control error to be as small as possible and at this same time to include other criteria, 
too. 

This hybrid control algorithm was implemented and tested on LEGO robots. Its results were 
compared also with a non-adaptive FC designed by a human operator. The control task was the so-
called parking problem, i.e. to park a mobile robot at a given place and direction. It was solved with 
and without obstacles. The process monitor (see fig. 2) evaluates the parking process by two 
criteria: parking error EP - more important corresponding with the control error and trajectory error 
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ET - computed as division of the real trajectory length and optimal trajectory length. The optimal 
trajectory is the shortest distance between the robot and the goal. The first criterion is in the form: 

 222 )()()( yyxxE fffP −+−+−= φφ ,  (6) 

where (x, y) are coordinates of the robot, φ is its position angle and (xf, yf, φf) are position and 
direction of the goal (parking place). Similar description is used for starting (initial) points, too. In 
the case of obstacles one additional criterion comes still into consideration - number of impacts on 
the obstacle. 

The criterion predetermines also the structure of IF-THEN rules, in our case three inputs (x, y, φ) 
and one output - change of the wheels angle for such a robot. The parking problem was solved with 
the help of a non-adaptive controller by 35 rules. It has no sense to observe the number of rules in 
the case of SOFLC because this number was very varying and there is almost no upper limit for 
their number. We need to consider there are an unlimited number of combinations for intersections 
of fuzzy sets in (5). However, their number was considerably (several times) greater than for the 
non-adaptive controller. From this reason it was necessary to use a simple garbage collector, which 
minimizes the number of rules. It removes replaced and identical rules. If there are rules with 
identical premises but different consequents the older rule will be removed. Further, it is possible to 
improve its efficiency removing rules whose membership functions have small heights or merging 
rules with similar premises. 

Results of several experiments for different starting points (in parentheses) are depicted in figures 3, 
4 and 5. 

  

(a) (b) 

Figure 3: Comparison of trajectories for a non-adaptive FC (20, 80, 260) (a) and a hybrid AFC 

(20, 80, 260) (b). 

We can see that the first two criteria EP and ET are better fulfilled at a non-adaptive FC. There are 
two reasons. First, EP and ET are not totally independent. Both are quantitative and EP influences ET 
directly proportionally. If EP increases then also the trajectory will be more different from the 
optimal length but the shape may be in spite of that of 'better quality' what is also this case. It can be 
seen especially at the obstacle avoidance fig. 4 and 5. This assertion is supported by a smaller 
number of impacts for GIFC than for non-adaptive FC. Secondly, reinforced rules are fired till in 
next steps after the error already occurred and in such a way delay influences the efficiency of GIFC 
negatively. Shortening the sampling period T can eliminate this problem. There are only hardware 
limitations. 
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4 RELATION-BASED IMPLEMENTATION OF SOFLC 
This kind of implementation is considerably simpler than in the previous case. We will construct all 
three fuzzy relations R(k), Rbad(k) and Rnew(k) as described in (3) and (4). R(k) can be set up in the 
initialisation step as a zero matrix. In such a way we get n-dimensional cubes (in the case of two 
inputs and one output three-dimensional ones) where each element is characterized by the grade of 
membership to such a fuzzy relation as seen in fig. 6. 

  

(a)       (b) 

Figure 4: Comparison of trajectories with an obstacle for a non-adaptive FC (80, 80, 260) (a) and a 
hybrid AFC (80, 80, 260) (b). 

  

(a)       (b) 

Figure 5: Comparison of trajectories with an obstacle for a non-adaptive FC (60, 70, 150) (a) and a 
hybrid AFC (40, 80, 110) (b). 

However, there are also two basic drawbacks: 

1. Loss of IF-THEN rules - Knowledge representation in the form of fuzzy relations is not 
'user-friendly' and it is not possible to make an unambiguous transform from a fuzzy relation 
to a fuzzy set (reverse transform is possible). 

2. Higher computational complexity - To calculate next R(k+1) it is needed to perform a 
complete set of all matrix calculations for each value from supports of input/output values. If 
the discretization of the support is dense (support has many values) then the size of such a 
matrix will grow enormously. 
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The relation-based implementation of SOFLC was used for the design of an automatic pilot. For the 
sake of simplicity we will take into account only the longitudinal flight (plain X x Z) and therefore 
we will control only the height of the aircraft as seen in fig. 7. The goal of control is to follow the 
prescribed rising trajectory, in other words, to keep the pitch angle equal to the angle of the 
prescribed trajectory. The basic description of an aircraft model resulting from motion equations by 
a fuzzy state model consists of four state quantities: 

α - angle of attack (slope of the aircraft in the horizontal flight) 

w - vertical velocity (projection of total aircraft velocity  into the vertical plane) 

θ - pitch angle (angle between the longitudinal aircraft axis and earth) 

q - pitch rate (derivative of θ) 

 

 

Figure 6: Structure of fuzzy relations for R(k), R(k+1), Rbad(k) and Rnew(k). 

 

Figure 7: State values of an aircraft for its control in the longitudinal plane. 

To overcome problems with the excessive sensitivity to external signals we will in contrast to [9] 
observe both the position of the performance measure p(k) and its trend, i.e. the first derivative 

)(kp& . The knowledge modifier (see fig. 1) of our AFC is completed still by an adaptation 
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supervisor where these rules are included. They are mostly problem-oriented and their parameters 
are dependent on the application but we can find some general knowledge, which can be described 
as follows. If we have a totally empty knowledge base we will let the adaptation (more correctly 
learning) in full processing without any limitations until it reaches a proper state of the controlled 
system (by defined criteria). Then we will stop the adaptation and will observe p(k) and )(kp& . If 
p(k) is not very significant and its change ( )(kp& ) is moving in an appropriate direction then we will 
not start the adaptation. This state indicates probably only an external error, which can be eliminated 
by the controller without any change. It seems to be advantageous in many cases if the change of 
p(k) is calculated from a longer time interval. 

The performance measure p(k) is defined in this case as the difference between the optimal dumping 
ratio λopt and the current λ. If λ is high then the control will be slow and with small oscillations. If λ 
is low then the control will be fast but with high oscillations. The goal of the control is to minimize 
the performance measure, which is identical to the physical point of view, i.e. to stabilize the pitch 
angle φ at a certain value. 

The results of some experiments are shown in fig. 8 and fig. 9. The main improvement is the 
minimization of oscillations so the dumping continuance form is almost aperiodic and the transition 
time remains the same. This fact enables a more comfortable flight as well as the increase of 
lifetime for mechanical parts of aircraft body (the most evidently in fig. 9). 

  

(a)       (b) 

Figure 8: Responses of state quantities for an aircraft with a PI controller (a) and with AFC (b): α - 
angle of attack; V - air velocity; q - pitch rate; φ - pitch angle. 

  

(a)       (b) 

Figure 9: Responses of actuator - elevator for an aircraft with a PI controller (a) and with AFC (b). 
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A very important quantity is the angle of attack α that influences the flight stability and also the 
control process. Relative improvements in minimizing oscillations were also obtained when the 
flight altitude was changed (as an external error). The not fully smooth control is the tax the 
adaptation is limited by our adaptation supervisor. Its partial improvement can be reached by 
increasing the sampling frequency but this way enhances the computational efforts very enormously. 
Therefore it is important to find the balance between computational complexity and control quality. 

5 CONCLUSIONS 
The principal advantage of both approaches is the substitution of a human expert in the 
establishment of the fundamental knowledge about the fuzzy controller, which is the most serious 
disadvantage of standard fuzzy systems. The designs presented enable fuzzy systems to be used for 
the control of systems characterized by great changes of parameters during their working. The 
second advantage is that we need to know only the dynamics of the controlled system and no input - 
output samples are necessary in advance. This fact enables the on-line adaptation and the set up of 
minimum parameters, which can lead to the decrease of the computational complexity. A hypothesis 
can be stated the rule-based implementation of SOFLC is more convenient for dynamical systems of 
higher order or with significant non-linearities but it has great demands on computational capacity. 
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