Journal of Cybernetics
and Informatics

published by

Slovak Society for
Cybernetics and Informatics

Volume 11, 2010

http://www.sski.sk/casopis/index.php (home page)

ISSN: 1336-4774



Journal of Cybernetics and Informatics 11 (2010)
http://www.sski.sk/casopis/index.php

USING MULTIPLE FPGA IMPLEMENTED WATCHDOGS FOR
IMPROVING OF EMBEDDED SYSTEMS RELIABILITY

Méria Pohronské and Tibor Kraj ¢ovi¢

Slovak University of Technology, Faculty of Infotitsand Information Technologies
Ilkovicova 3, 812 19 Bratislava, Slovak Republic
Tel.: +421 2 60291111 Fax: +421 2 654 20 587
e-mail: {pohronska, tkraj}@fiit.stuba.sk

Abstract: The paper deals with the problem of fault-tolerembedded systems. To ensure the
system’s fault tolerance, we use the multiple wadgch system that assigns a dedicated hardware
watchdog timer to each of the concurrent procesbes. sake of simplicity, effectiveness and
adaptability, the watchdogs are implemented inpttogrammable hardware devices. This approach has
several advantages and provides a method for ingrieng the reliable fault-tolerant embedded
systems.

Keywords: embedded systems, concurrent processes, faulableystems, watchdog, reconfigurable
circuits, FPGA

1 INTRODUCTION

Embedded computer systems are defined as systatsréhan inseparable part of the devices,
which they control. Generally, they work in reah& and they use special input/output devices
for an external communication. Another typical teatof these systems is that they are often
designed on a microcomputer basis, with their saféalocated in ROM. Another significant
characteristic of some embedded systems applicaitothe requirement for increased level of
reliability, especially of the fault tolerance (Ber, 2002). In general, an embedded system
realizes a complex control algorithm in real tinfdhe particular requests are serviced by
concurrent processes. To ensure the tolerancesdhthts in the program flow of a concurrent
process, we often use a watchdog timer. A watchauogr is a hardware device that takes
certain actions when a timer expires. The actiariccbe as simple as restarting the system or
as complex as running a system diagnostic testatslvdog timer is said to have fired if it has
not been reset within a programmable period. thesrole of the particular watched task or
process to configure the watchdog timer and tooplerally reset the timer before it expires
(Ganssle, 2008).

For such application, we necessarily need to krieevtime needed for the accomplishment of
the process. When starting new process, the wafichideer that has been assigned to the
process is initialized. The initialization value w8ith a small reserve, equal to the maximum
execution time of the process. If a fault occursghim process and changes the program flow in
such way that it lets the watchdog timer overflimgutomatically signalizes that an error has
occurred in the program flow or that the progranntimeet the response time deadline.

Primary disadvantage of this approach is that yiséem is by standard equipped only with one
or several few hardware timers. Each hardware tisi¢hen used for the implementation of
orders of tens to hundreds of software watchdogemnfor the concurrent processes. An
individual fault in a process can possibly manipeihe hardware timer in such way that it is
no longer usable and thus blocks the control fothe processes assigned to this hardware
timer.



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 42

This paper deals with the option of implementingltiple dedicated hardware watchdog
timers, utilizing the programmable hardware. Thisluson has several advantages -
particularly it contributes to the system’s relidpiimprovement.

This document is divided into six sections. Thetrsaction deals with the related work in this
research area. The third section briefly introduties proposed solutions, summarizes its
advantages and drawbacks and proposes variousaappsoto its implementation. The fourth
section describes the developed architecture olukipte watchdog timer circuit with serial
communication interface. The results of the expental synthesis are presented in the fifth
section. The final section concludes the paperdismlsses the future work.

2 RELATED WORK

The usual watchdog timer implementations in embedaied other self-sustaining systems
utilize the hardware watchdog timers which are adled in the microprocessor or are part of
the microprocessor’'s chipset. Several commercigllementations of hardware watchdog
expansion cards or devices exist, however, theodiged implementations are of very simple
nature, outdated and they mostly offer only onechadbg timer per device. (Kochan, 2002)
implemented and described the watchdog timer fesgral and embedded computers that
utilizes the keyboard communication port. The devigenerates the special scan-codes
periodically and awaits corresponding answer froma $ystem (scan codes for toggling the
LED indicators). When it doesn’t receive the answeresets the whole system. The work
(Giaconia, 2003) deals with the FPGA implementatadncustomized embedded system’s
watchdog processor. In this case, the circuit doeprovide timer for the several processes but
has more complex fully customized functionalityprbvides a reasonableness check on some
variables and a basic program flow check.

3 FPGA IMPLENTATION OF MULTIPLE WATCHDOGS

Nowadays, the programmable hardware devices giventibedded designers much more
flexibility and customizability of their product&écker, 2003). These devices are used widely
in the embedded systems and in their developmewceps. More details on such utilization of
the programmable devices can be found in (Pohron2k@9). For our problem, the
programmable hardware provides us with the podsilof implementing a hardware watchdog
timer for each of the concurrent processes in yls¢em. The creation and assignment of the
own hardware watchdog timer for each of the systgonbcesses eliminates the possibility of
disabling the watchdog timer for another process.

Other advantages of such implementation are summethbelow. Firstly, we can theoretically
implement as many timers as we need for the systamonly limitation lies in the size of the
programmable device. For larger architectures gstéms, we can use multiple FPGA devices.
Second advantage lies in the enhanced securitheosystem — when a fault occurs in the
process, it can only modify its own timer or, ire torst case, the timer of another process. At
any rate, it is far better than the alternativedigbbling the common timer of many processes.
Furthermore, the service routine for the singleickdd hardware timer is much more simple
that the service routine for the timer which isrgkaby multiple processes. Thus, the system
gains on speed and software simplicity. Anotheraatikge of using programmable hardware is
the possibility of the custom design that ofterdie#o resource savings. Particularly, we can
configure each timer with the precise bit width e for the computation. Most of the today’'s
FPGA devices also offer the ability of run-time aafiguration. The part of the circuit can be
reconfigured while the rest of the circuit is wargicontinuously. Thus the process can have its



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 43

timer provided and assigned anytime it is initiefiz This gives the system great flexibility
comparable with the standard watchdog implememtatio

The main drawback of our proposed approach is ¢eel fior the usage of additional hardware
element that brings additional demands for spase/ep consumption and cost of the system.
Another disadvantage comparing to the commonly wsastems is the time needed for the
reconfiguration of the programmable hardware whmetializing the timer. This process can

take much longer than the software initializatiénth@ shared watchdog timer.

For the effective utilization of the proposed smotwe have to take particular care of the
architecture of the embedded system. We decidembrisider only the watchdog timers that
generate interrupt request, so the system coulk s&s universal additional component for
various embedded systems. There are several dagsbof realizing the connection between
the programmable hardware and the control proces#sazach case, we need the FPGA to
generate an external interrupt. Then, we need dwige the processor with the particular
details of the occurred situation. The first variasm the connection of the FPGA as the
coprocessor. This architecture provides the fas@stimunication facilities but it also is quite
expensive solution that is not always feasible. $3b&eond variant is the utilization of the data
bus for the communication. In such case, we wougb dave to implement hardware
connections and software routines needed for teehbndshake functions. The third variant is
the communication through the shared memory. Thigads the processor of the task of
serving the FPGA and gives the serving process fexiility. The last proposed connection
architecture is the connection via standardizethlseommunication interface, for example
USB, 12C or SPI. This solution is the cheapestmodt simple one but it has drawbacks of the
need of first-hand service and slow communicatipeesl that can lead to unwanted system’s
overload.

In our experimental work, we would like to implenteand compare all of these proposed
alternatives. Currently, we deal with the implenagioin of the watchdog timer circuit with
serial communication interface.

4 THE ARCHITECTURE OF THE EXPERIMENTAL FPGA WATCHDOG SYSTEM

As the first step, we decided to implement the Wwabg circuit with the serial communication
interface, which is the simplest from the above nomed alternatives. This architecture is
sufficient for the initial proving of the proposedncept.

The basic element of the circuit is the single Wwdtg counter. The watchdog counter has been
designed as simple as possible, in order to mimrapace requirements. It offers four inputs —
Reset, Serial Load, Counter Clock and Communicalilmek. It provides only one output — the
Overflow flag. This basic architecture is showrhe Figure 1.

Counter Communication
CLK CLK

Serial Load >
Generic Watchdog Timer
Overflow

Reset >

Figure 1: The watchdog timer block scheme

The watchdog timer can be loaded with new valuetiveaserial input “Serial Load” which is
synchronized by the “Communication Clock” input.téf loading new value, the counter



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 44

begins to count from the loaded value to zero. Taisnt is synchronized by the “Counter
Clock” input. As soon as it reaches the zero vathe, counting stops and the “Overflow”
output is activated. In order to reset the couatet begin the count from the initial value, the
input “Reset” has to be activated. The watchdogntauis implemented as a generic
component of arbitrary width. Thus, the width otleaounter can be fully customized. The
serial load process takes as long as needed fpattieular counter. For this reason, the master
processor needs to know the width of each counteenwinitializing it. The following
paragraph shows the declaration of the watchdatyewith generic counter width.

entity WDT_generic is
generic(
WDT_width : natural := 16
)i

Clk: in Bit; -- Clock for the counting process

ComClk: in Bit; -- Communication clock (for the
loading process)

Res: in Bit;

Sload: in Bit;

Overflow: buffer Bit

port(

end Q/VDT_generic;
For integrating many timers into one circuit, weeded to develop an architecture that would
be appropriate and would require minimum overheeisc We decided to use address bus and
address decoders for enabling individual counfens. data lines of ,Reset" and ,Serial Load"
are lead to each counter. The usage of countetssgiial load unloads us from the need of
using the parallel data bus and routing it to emmimter. It also enables us to fully exploit the
potential of the counters with customized width.

We have designed a generic architecture that allsv® customize the width of the address
bus and the thus the maximal number of countetlarcircuit. The only restriction is that the
address bus width should be divisible by four. Tgrencipal scheme of our proposed
architecture is shown in Figure 2.



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 45

|
Com Data_! ADDRESS BUS (16 bits)
- ——p

|
LomCLK | Com CLK

I

| CLK
| A
|

Yy

\AddressEn__,
Control Unit |Comm. En -

Interrupt |

request | | Serial Load
oo—p ADR3-0

Reset . 10 —
> >

|
|
| —- —- 10 00
|

13
" Overflow — -
Decoder —» B

ADR 15 -12

O15/—

—»
—
—
—
—
—
—
—
—
—
—
—
—
—
>

'

JY CountCLK  Com CLK
El

n1 Out1—— Generic Watchdog
Enable Timer
circuit Sioad

»lin2 o ua_»,—bReset Overflow———

—]

Figure 2: The basic architecture of the counteresking mechanism

When the overflow occurs in one of the counterscihmuit has to generate the interrupt request
for the master processor. The processor then askihé number (address) of the overflown
counter. Thus, when the counter overflows, we rteeabtain its address. This is realized by
encoding the actual counter position and placimgethcoded address on the address bus. The
encoders are connected to the cascade, similarlgeadecoders. We also need to deliberate
that the overflow can occur in several timers atgame time. Thus, the circuit needs to decide
of the priorities and also has to ensure that titgess bus would be written only by one device
at the same time. For the fulfilment of the firsguirement we decided to use encoders with
priority. The exclusive bus access could be howaekieved only by providing feedback from
the hierarchically higher “priority encoders” toetlsubordinate “priority encoders”. For such
function, we needed to develop a non-standard texthre which provides both encoding with
priority and feedback decoding function. We alsechto propagate the overflow flag through
this circuit. The following code shows the declamatof the “Priority encoder-decoder entity”.

entity pri_encoder_decoder is
port (
enable:in Bit;
encoder_in :in std_logic_vector (15 downto 0);
decoder_out:out Bit_vector (15 downto 0);
binary_out :out Std_logic_vector (3 downto 0);
overflow_active: out Bit
).

end pri_encodér_decoder;

The scheme of the proposed architecture for theead@ncoding process is shown in Figure 3.



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 46

|
Com Data | ADDRESS BUS (16 bits)
|
| A
M‘W Com CLK -
| >
CLK
| > ADR 15- 12
: Address En >
nterupt || COMtrol Unit |comm En g
request | Serial Load Enc 3
< q —— =eraLoad s-—»I15
| Reset 1
EE— ADR3-0 H
| H Priority
| H Encoder
| aQuerflow —»{0  Enco ' Py
i '
H &=
i Eed E Deccz)der0
— wli1s : ec 0 l—
: i
' i
Y Priority H Dec 15—'»-...:
CountCLK _ Com CLK H
oun o Encoder ! —{EN Overflow—m—
Generic Watchdog + ' H
Timer Decoder ' H
—Sload H ]
—|Reset Overflo w Dec 0 —» ' H
H H '
H H .
Dec 15— H
'
:-—> EN Overﬂow—»---: H
: :
L ececcccccccccceccaccannn Mhoccccccoccaccaacanaa )

Figure 3: The proposed architecture of the encodiiroyitry.

The control unit of the circuit that can be seenboith pictures provides the communication
interface for the master processor. It also pravitdee connectivity and service for the inner
counter circuits. The communication interface slized by two wires — the “Communication
Clock” signal that is used for synchronization ¢engenerated only by the master device — the
processor. The “Communication data” wire beardiaesformed information. The control unit
is able to recognize and serve three commands. ¢éramand is a reset request. After this
command, a 16-bit address follows. As soon as thelevcommand is received, the control
unit resets the requested counter and sends theowlEddgement message to the master
processor. The second command is a request oiigaah existing counter with a new value.
As the control circuit doesn’t store informationoab the width of each counter, the load
process should be realized by connecting the coumith the data line directly. So, the
connection is made instantly after obtaining thewec@nd and a complete address of the circuit.
The load process then continues for as long, adeled he control unit returns to the idle state
when there has been no activity of the “CommunicaClock” signal for several clock cycles.
This ensures recovery from the communication eraoié also enables the serial load process
without need of explicit knowledge of the loadedicter's width. The following paragraph of
code shows the “communication bus watchdog” pracess

process (CLK) -- watchdog for the communication bu s clock
signal
begin
if(CLK'Event and CLK="1") then
if (communicating="1") then
idle_time :=0;
idle_id <="0",
elsif idle_time >= max_idle_time then
idle_id <="1",
else
idle_id <="0",



M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 47

end if;
idle_time :=idle_time + 1;
end if;
end process;

The third recognized command is the request fornim@ber of the overflown counter. As
already mentioned, the control unit recognizes omlg address of the overflown counter at the
same time. So after receiving the command, it sémelsddress of the overflown counter that
has maximum priority. This counter is then reseat aen there are no remaining overflown
counters, the interrupt request signal is dea@d/at

5 EXPERIMENTAL RESULTS

For the initial experiments, we have implementea watchdog circuit with the master control
unit and a single watchdog counter. Implementatinod simulation has been successful and
approved the suitability of the proposed architect@he experiments have also shown us the
space required for the realization of the circuthva single counter, in a FPGA device. Firstly,
we have synthesized the same architecture whilagihg the counter width. As a reference
circuit, we have chosen the Xilinx xc3s4000 cirapfitthe Spartan 3 family. The number of
consumed LUTs can be seen in the second columraloeTl. As we can see, counters with
various widths can be implemented into the FPGAretogy more or less effectively.

Table 1: Implementations of a single watchdog ceuatchitecture of various widths

Timer width (bits) Number of LUTs Utilization
8 912 1%
16 1767 3%
32 3425 6%
64 3428 6%
128 3431 6%

In the second experiment we have implemented ttigitacture with single 64 bit counter in
several FPGA circuits, observing the consumed plale results are summarized in the Table
2. The experiments have been realized using thexX{iEE Design Suite 10.1.

Table 2: Implementation of a single watchdog couatehitecture in various FPGA devices

Device Device Number of LUTs Total Utilization | Consu
family number mption
of LUTs (W)
Spartan 3 | xc3s200 | (4-input LUTs) 3428| 3840 89% 0,15
Spartan 3 | xc3s4000 | (4-input LUTs) 3428 55296 6% 0,265
Virtex 4 XC4vix15 | (4-input LUTS) 3404 12288 27% 0,23
Virtex 5 xc5vfx330 | (Slice LUTS) 2852 207360 1% 13,848




M. Pohronska and T. Krajé¢ovi¢ / Journal of Cybernetics and Informatics 11 (2010) 41-48 48

6 CONCLUSION

We have proposed a new method for the implementatidault-tolerant embedded systems,
utilizing the programmable hardware for implemeiotatof multiple watchdog timers. The
proposed solution promises significant improvemeéntthe system’s reliability and stability
and can be utilized in any embedded computer syséenecursive generic architecture of a
multiple-watchdog timer system with serial commatien interface has been developed. Our
experiments based on architecture with single tigiew that the proposed concept is viable
and that the implementation of more complex archites based on this concept would be
feasible.

We plan to continue our work by testing the impleted system in a real embedded
application. Afterwards, we plan to focus on therencomplex architectures with better
communication capabilities.

This work was supported by the Grant No. 1/08220@e Slovak VEGA Grant Agency.

REFERENCES

BECKER, J., H. R. (2003): Configware and morphware going mainstredm, Journal of Systems
Architecture 49(4-6), 127-142.

BERGER A. S.(2002):Embedded Systems Design. CMP Badkanrence, 237 pages.

GANSSLE, J.G. (2008): The Art of Designing Embedded Systems. Seconddtdifilsevier, 298 pages.

GIACONIA, G.; DI STEFANO, A. & CAPPON, G. (2003):'FPGA-based concurrent watchdog for real-time
control systemsin: Electronics Letters3%(10), 769-770.

KOCHAN, R.; KOPYLCHAK, A. & KORKISHKO, T. (2002): Improved watchdog timer for control the IBM
PC based autonomous computer systems,'Modern Problems of Radio Engineering,
Telecommunications and Computer Science, 2002. ediegs of the International
Conference'pp. 181-182.

POHRONSKA, M. (2009): Utilization of FPGAs in Real-Time and Embedded Byst,in M. Bielikova,
ed.,'Proceedings in Informatics and Inormation Treabgies Student Research Conference’,
Vydavatd'stvo STU, pp. 300-307.



