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Abstract 

Among optimizations of reactive power are minimization of total active power losses and control of 
voltage in the real-time. This can be achieved by placing the optimal value of capacitor at proper 
locations in electrical distribution systems. The proposed methodology is an intelligent fuzzy-ant 
approach of critical buses detection for optimal placement and sizing of capacitor banks in electrical 
distribution systems the critical nodal is determiner using fuzzy controller and the sizing of capacitor 
banks is obtained based on ant colony system. Calls up to the ant colony system which are use for 
complexes combinatorial problem minimizes the cost function. Voltage constraints are considered. 
The proposed fuzzy-ant approach is has been evaluated on a 25 and 30 buses.  

Keywords: Critical nodal detection, capacitor placement and sizing, fuzzy-ant approach, ant colony 
system, power flow 

1   INTRODUCTION 

Power distribution from electric power plants to ultimate consumers is accomplished via the 
transmission sub transmission, and distribution lines. Studies have indicated that as much as 
13% of total power generated is consumed as 2RI losses at the distribution level. The 

2RI losses can be separated to active and reactive component of branch current, where the 
losses produced by reactive current can be reduced by the installation of shunt capacitors. 
Capacitors are widely used in distribution systems to reduce energy and peak demand losses, 
release the KVA capacities of distribution apparatus and to maintain a voltage profile within 
permissible limits. The objective of optimal capacitor placement problem is to determine the 
size, type, and location of capacitor banks to be installed on radial distribution feeders to 
achieve positive economic response. The economic benefits obtained from the loss reduction 
weighted against capacitors costs while keeping the operational and power quality constraints 
within required limits. 

Fuzzy logic provides a remedy for any lack of uncertainty in the data. Furthermore fuzzy 
logic has the advantage of including heuristics and representing engineering judgments into 
the capacitor allocation optimization process.  

The ACS is a metaheuristic motivated by the behavior   observed in colonies of real ants for 
finding the shortest path from a food source to their nest. Ants can find the shortest path 
because they deposit pheromones on paths they visit and they follow paths with higher 
pheromone trails. In [2], the ACS was proposed to solve the traveling salesman problem

 



 (TSP) by generating successively shorter feasible tours using information accumulated in the 
form of a pheromone trail deposited on the edges of the TSP graph. 

Many of the previous strategies for capacitor allocation in the literature are also limited for the 
application to planning, expansion or operation of distribution systems. Very few of these 
capacitor allocation techniques have the flexibility of being applicable to more than one of the 
above problems. Hence, this paper presents a fuzzy-ant approach to determine suitable 
locations for capacitor placement and the sizing of the capacitor. This approach has the 
versatility of being applied to the planning, expansion, and operation studies of distribution 
systems. The proposed method was tested on electrical distribution systems consisting of 25 
buses distribution system. 

2   MATHEMATICAL FORMULATION 

The Principe of method is presented in Fig. 1. 

  
 
 
 
 

 
 
 
 
 

The objective function of placements to reduce the power loss and keep bus voltage within 
prescribed limits with minimum cost .The constraint are voltage limits .Following the above 
notation, the total annual cost function due to capacitor placement and power loss is written 
as [10]: 

Constraint of voltage:    

 
 Where: 
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F  : Total annual cost function   [$], 

PLK  : Annual cost per unit of power losses   [$/kW], 

LP  :Total active power loss [kW], 

CjK  : Capacitor annual cost [cost/KVar], 

jB  : Shunt capacitor size placed at bus j [kVar], 

N  : Number of buses, 

minV  

maxV  

: Minimum permissible rms voltage, 
: Maximum permissible rms voltage. 

Figure 1: Bloc of intelligent fuzzy-ant approach 
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3   FUZZY LOGIC CONTROLLER 

Fuzzy logic is expressed by means of the human language. Based on fuzzy logic, a fuzzy 
controller converts a linguistic control strategy into an automatic control strategy, and fuzzy 
rules are constructed by expert experience or knowledge database. 

First, set the power loss index PLI  and the voltage V  to be the input variables of the fuzzy 
logic controller. The Capacitor suitable index CSI  is the output variable of the fuzzy logic 
controller.  

The linguistic variables are defined as {L, LM, M, HM, H}, where L means low, LM means 
low medium, M means medium HM means height medium and H means height. The Structure 
of Fuzzy Controller is shown in Fig. 2. The membership functions of the fuzzy logic controller 
are shown in Fig. 3, 4, 5. The fuzzy rules are summarized in Tab. I. The type of fuzzy 
inference engine is Mamdani. The fuzzy inference mechanism in this study follows as: 

Where )PLI(µ j
1A

is the membership function of PLI , )V(µ j
2A

 is the membership function of 

V , )CSI(µ jB
is the membership function of SCI , j   is an index of every membership 

function of fuzzy set, m  is the number of rules and  is the inference result. Fuzzy output CSI  
can be calculated by the centre of gravity defuzzification as: 
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Where :i  the output rule after inferring. 
 

3.1   Fuzzy based capacitor location  

Node voltages and power loss indices are the inputs to fuzzy controller to determine the 
suitability of a node in the capacitor placement problem. The suitability of a node is chosen 
from the capacitor suitability index (CSI) at each node. The higher values of CSI are chosen 
as best locations for capacitor placement [1, 2, 3, 4, 5]. 
The power loss indices are calculated as: 

Where: 
RL  : Loss reduction, 

MINL  : Minimum reduction, 

MAXL  : Maximum reduction, 
N  : Number of bus. 
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F: Fuzzification, F-1: Defuzzification                
Where:  

:F     Fuzziffication 
:F 1−  Defuzziffication 
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Figure 3: Power loss indices membership 
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 Figure 4: Voltage membership functions 
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Figure 5: Capacitor suitability index membership function.                                                

To determine the critical busses the voltage and power loss index at each node shall be 
calculated and are represented in fuzzy membership function. By using these voltages and 
PLI, rules are framed and are summarized in the fuzzy decision matrix as given in Tab. I. 

Table I: Decision matrix for determining suitable capacitor 
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Figure 6: View plot surface of fuzzy controller 

3.2   Algorithm for critical busses identification 

Following algorithm explain the methodologies to identify critical busses, witches are more 
suitable for capacitor placement [6, 10]. 

Step1: Read line and load data of power system. 
Step2: Calculate power flow Newton Raphson methods 
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Step3: Determine total active power loss. 
Step4: By compensation the self –reactive power at each node and conduct the load 
           flow to determinate the total active power losses in each case. 
Step5: Calculate the power loss reduction and power flow loss indices. 
Step6: The PLI and the per-unit voltage are the inputs to the fuzzy Controller. 
Step7:  The outputs of Fuzzy controller are deffuzzified. This gives the ranking of CSI. 
The nodes having the highest value of CSI are the most suitable for capacitor placement.  
Step8: Stop. 

4   ANT COLONY SYSTEM (ACS) 

4.1   Overview 

The ACO algorithms form a class of meta-heuristic to solve NP-hard combinatorial 
optimization problems. It has been introduced for the first time by (Colorni et al., 1991) to 
solve the traveling salesman problem. The basic idea is to imitate the behavior of real ants 
foraging for food. In fact, the real ants can found the shortest path from a food source to their 
nest without visual cue (Beckers et al., 1992). Indeed, they communicate, in a local and 
indirect way, through an aromatic essence called “pheromone”, deposed on the ground as they 
move about. Being very sensitive to this substance, an ant seeking food choose, in a randomly 
way, the path comprising a strong concentration of this substance. Thus, as more ants take the 
same path, more than ants will be attracted by this path. By analogy, in ACO algorithm, 
artificial ants build a solution by applying a probabilistic decision to choose a next 
destination. The generation of solutions is guided by pheromone trail and information related 
on the problem specification. Then, the ACO can be defined as an extension of traditional 
construction heuristics which have to adapt the pheromone quantity during the execution of 
the algorithm to take, into account, the experiment of research. We note that, in addition to the 
real ants characteristics, the artificial ants are equipped with a memory, are not completely 
blind, and the used time is discrete. 

The Ant Colony System ACS is a particular approach of the ACO, proposed by (Dorigo and 
Gambardella, 1997) to solve the traveling salesman problem. In the ACS, a set of cooperation 
agents (ants), initially positioned at a starting point with a number of destination points, 
cooperate to find routes according to some rules. In fact, each ant builds a feasible solution by 
applying a probabilistic function based on the pheromone trail and a heuristic function. While 
constructing its solution, an ant changes pheromone level of the selected edge by applying a 
local updating rule. Once all the ants have completed their solution, a global updating rule is 
performed [11, 12, 13, 14, 15, 16, 17, 18]. 

4.2   Implementation of ant colony system based capacitor sizing 

To apply the ant colony system (ACS) algorithm to a combinatorial optimization problem, is 
reside to represent the problem by a matrix G = [n, r].  
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:n  Number of capacitor size. 
r :  Number of critical  busses. 

An ant positioned on node i chooses the capacitor j by applying the rule given by: 

And j is a random variable selected according to the probability distribution given by: 

α and β are parameters that control the relative weight of the pheromone. A Ci   is the set of 
available Components or capacitors. While constructing its solution, an ant also modifies the 
amount of pheromone on the visited capacitor by applying the local updating rule: While 
building a solution of the problem, ants choose elements by visiting element on the matrix G, 
and change their pheromone level by applying the following local updating rule: 

Where ρ is a coefficient such that (1-ρ) represents the evaporation of trail and τ0 represent the 
initial trail of pheromone. Once all ants have terminated their tour, the amount of pheromone 
on capacitor size is modified an Ant colony system in (by applying the global updating rule): 
Once all ants have built a complete system, pheromone trails are updated. Only the globally 
best ant (i.e., the ant which constructed the best solution from the beginning of the trial) is 
allowed to deposit pheromone. A quantity of pheromone  ∆τij is deposited on each capacitor 
size that the best ant has used. Therefore, the global updating rule is: 

Where 0 < ρ < 1 is the pheromone decay parameter representing the evaporation of trail and 
∆τij represent the lay of the pheromone in the Capacitor C (i, j). Ants are guided, in building 
their tours, by both heuristic information (they prefer to choose "less expansive" element), and 
by pheromone information. Naturally, an element with a high amount of pheromone is a very 
desirable choice. The pheromone updating rules are designed so that they tend to give more 
pheromone to element which should be visited by ants. 

4.3.   Ant colony algorithm for size capacitor computing  

The Ant colony system based capacitor sizing algorithm is given below:  
Step1: Initializing pheromone an visibility each element of matrix G, 

For  n:1i =   
For r:1j =   
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Step2: In this phase each ant builds their tours. The tour of ant is stored in tabu list, 
While pk ≤ (stopping criterion is no wet met) 
           For m:1l =   
           For r:1s =  

       • Choose the next element of matrix G according to formula (8) and formula (9), 

     • Stored in tabu list, 

             • For each chosen element local updating occurs and pheromone is updated using 
formula (10), 

  End For 
• Evaluate the fitness for each combination according to the objective function 
(including penalty function) .The fitness function includes the total cost investment F   
and  the penalty functions .the penalty function used in implantation is quadratic .It act as  
a soft constraint .The constraint includes the bus voltage at each bus 

 • Find the minimum (F best) among  m1 cost functions, 
   End For  

Step 3: In this phase global updating occurs and pheromone is updated, 

         • Update elements of matrix G belonging to Fbest using formula (11) and 

best
ij K

1τ∆ = . 

End While. 
Where: 

:m  Number of ant, 
:p   Number of maximum cycle. 

5   RESULTS AND DISCUSSION   

The proposed method is illustrated with a system, consisting of 25 bus. The location for 
placement of capacitors is determined by fuzzy controller and the capacitor sizes are 
evaluated using ant colony system. KPL was selected to be 168 $/kW, and voltage limits on 
the rms voltage were selected as pu95.0Vmin =  pu and pu10.1Vmax = . 

Fuzzy-Ant is applied for 25 buses electrical distribution systems the results of approach given 
above are shows at Tab. II. Fu Ant colony system parameter setting are show in table 3.in 
Table we show that the active power losses are decrease for e 29.8913 at 23.2082 MW, 
decreasing 22.358% and the minimal voltage are improved to 0.9241 at 0.9639 pu. 

Table II: Results of Fuzzy-Ant approach for 25 buses 
Value of 
capacitor 

[MVARS] 
Active power loss [MW] Minimal voltage  [PU] 

N
° o

f c
rit

ic
al

 b
us

es
  

 

Before 
placement of 

optimal 
capacitor 

 

After 
 placement 
of optimal 
capacitor 

 

Before 
placement 
of optimal 
capacitor 

 

Before 
placement 
of optimal 
capacitor 

 
7 9.00 
8 5.00 
10 8.00 
11 5.00 

 
29.8913 

 
23.2082 

 
0.9241 

 
0.9636 

Optimal annual cost  1262226 $ 

 

B. Gasbaoui et al / Journal of Cybernetics and Informatics 9 (2010)       19-30 26



 

The different voltages of 25 bus electrical network given before ant colony system are 
illustrated in Fig. 7. 
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Figure 7: Voltage before optimization 
 
The different voltages of 25 bus electrical network given after ant colony system are 
illustrated in Fig. 8. 
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Figure 8: Voltage before optimization 
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Fuzzy-Ant is applied for 30 buses electrical distribution systems the results of approach given 
above are shows at Tab. III and Tab. IV illustrate the Ant colony systems parameters. Fu Ant 
colony system parameter setting are show in table 3.in Table we show that the active power 
losses are decrease for 9.457 at 6.645MW, decreasing  29.67 %  and the minimal voltage are 
improved to  0.959at 0.968 pu. 
 

Table III: Results of Fuzzy-Ant approach for 30 buses 
Value of 
capacitor 

[MVARS] 
Active power loss [MW] Minimal voltage  [PU] 

N
° o

f c
rit

ic
al

 b
us

es
  

 

Before 
placement of 

optimal 
capacitor 

 

After 
 placement 
of optimal 
capacitor 

 

Before 
placement 
of optimal 
capacitor 

 

Before 
placement 
of optimal 
capacitor 

 
7 4.00 
12 2.00 
19 5.00 
26 2.00 
27 5.00 

 
9.457 

 
6.645 

 
0.959 

 
 
 

0.968 
 

Optimal annual cost  762226 $ 
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Table IV: Ant colony systems parameters 

 Ant colony system parameter setting Value 
α  Alpha parameters that control the relative weight of the 

pheromone 1 

β  Beta parameters that control the relative weight of the 
pheromone 5 

0τ  Initial pheromone trails 0.1 
ρ  Parameter of evaporation 0.5 
p  Number of maximum cycle  100 
m  Number of Ant 10 
η  heuristic information F1  

 

6   CONCLUSIONS 

This paper introduces an intelligent Fuzzy-Ant approach method to determinate a critical 
busses by fuzzy controller and ant colony system (ACS) for minimization a total cost 
investment for capacitor this combination reduce active power losses and improve the bus 
voltage .The main advantage of this approach is robustness of ant colony systems, over 
modern heuristic is flexibility, robustness of the complex combination problem, sure and fast 
convergence.  
As study case the 25 buses system and 30 buses. The simulation results show that for 
medium-scale system an ant colony optimization method can give a best result. 
Ant colony system parameter alpha, beta and visibility play an important role in the 
performance of ant colony system and some permutations and combinations of these 
parameters are to be tested to get the best performance.  
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