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Abstract: This paper presents a control concept of a of pendubot laboratory model, which is a two-link 
under-actuated robotic mechanism. A method for obtaining a mathematical model for the pendubot is 
presented here. Furthermore this mathematical model is used for LQ control synthesis. The inverted 
pendulum problem is well suited for education in control theory as well as for research in control of 
nonlinear mechatronic systems with fast dynamics. 
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1 INTRODUCTION AND PRELIMINARIES 

The pendulum is a mechatronic system which is one of the most important examples in 
dynamics and control. Many important engineering systems can be approximately modelled as 
a pendulum in order to gain insight into their dynamic behaviour, utilize it for control systems 
design e.g. trajectory of rocket or segway. The pendubot (Fig.1) is a two-link planar robot with 
an actuator at the first shoulder and no actuator at the elbow. The second arm moves freely 
around the first link which is driven by a motor (Mates, 2009). The control objective is to bring 
the mechanism to one of the unstable equilibrium positions. This paper deals with deriving a 
mathematical model of the pendubot. Further the LQ control gain matrix is obtained and the 
results are verified on a physical model. 

 

 
Figure 1:  Pendubot construction 
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2 MATHEMATICAL MODEL 

First we will derive the nonlinear dynamic equations of the system using Lagrange’s second 
method, which is based on the energy balance. The resulting equations can be written in closed 
form to allow an appropriate system analysis. After that the state space representation is 
created using linearization in the chosen operating point (Aurelie 2006, Block 1996, Mates 
2008). The following table (Table 1) lists physical parameters of our laboratory pendubot 
physical model, the symbols and corresponding values. The general notations are shown in 
Figure 2. 

 

Table 1: Parameter values 

Description Symbol Value 

Weight of arm mr 0,63 kg 

Length of arm l1 0,44 m 

Distance from centre of gravity of the arm to the 
axis of rotation 

lg1 0 m 

Friction coefficient in arm joint k1 0,08 kg.m2s-1 

Mass moment of inertia of the arm Ir 0,021 kg.m2 

Weight of pendulum mk 0,062 kg 

Distance from centre of gravity of the pendulum 
to the axis of rotation 

lg2 0,2 m 

Mass moment of inertia of the pendulum Ik 0,0012 kg.m2 

Friction coefficient in pendulum joint k2 0,0001 kg.m2s-1 

 

 
Figure 2:  Measured angles 
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The basic form of Lagrange equations is: 
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Where L is the Lagrange function, qi is the i-th generalized coordinate and Qi is a generalized 
force in the direction of i-th coordinate: 
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and τ  is the input torque of the system: 
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The Lagrange function is expressed as the difference between kinetic and potential energy of 
system. For the pendubot system this is: 
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In the next few steps partial derivations of the Lagrangian are obtained in order to get two 
nonlinear motion equations for the system: 
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In order to simplify these equations, the following substitutions in equation (5) and equation 
(6) are introduced: 
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The derivation of the ϕ&&  and θ&&  are expressed from the motion equations as functions of all 
other variables plus friction coefficients ( k1 and k2 ). Then we can obtain final nonlinear 
motion equations as: 
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Although the dynamic behaviour of most physical systems is nonlinear, many of these systems 
behave “almost linearly” at and near nominal operating points or along nominal trajectories. In 
our case we have performed linearization in the upper position of both arms. Defining the 
space-state vector as [ ]Tx θϕθϕ &&= , then the linearized state space model can be written 
in the following common matrix form: 

BuAxx +=&    (10) 

Due to the complexity of the functions equation (8) and equation (9) all necessary calculations 
have been done in Matlab/Simulink using the Symbolic Math toolbox. Consequently the 
resulting state-space matrices are in the form: 
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3 LQ CONTROL 

 

The linear quadratic controller can be synthesised from the state space model (10), with 
matrices (11). The state feedback gains K is calculated by minimizing the criterial equation 
(12): 

dtRuuQxxJ )''( += ∫    (12) 

This is done by solving the Algebraic Riccati Equation (13): 

PBPBRQPAPA TT 1−=++  (13) 

Where K is given by equation (14): 

PBRK T1−=    (14) 
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In the Matlab environment this is solved using the function “lqrd”. For real time experiments 
the sample time was set to 0,01s. The weight matrix Q and R have been determined using brute 
force search method in a limited range of values in the matrices. The search criterion was to 
obtain the controller eigenvalues without the complex part. The final settings used for 
simulation was following: 
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with the corresponding LQ control gain as: 

[ ]22,169,011,754,1 −−−−=K  (17) 

 

4 RESULTS 

This section presents results obtained with LQ control of our physical pendubot model in real 
time, using the Matlab/Simulink xPC Target configuration. The target PC is equipped with a 
I/O board, Humusoft MF-624, that is connected to a Mitsubishi MR-J2S-40A control unit. The 
control unit directly controls the motor in torque control mode and also reads the position the 
motor shaft (pendubot arm). The position of the pendulum is measured by IRC sensor that is 
connected directly to the PC I/O board. This configuration is shown on Figure 3. 

 

 
Figure 3:  Pendubot hardware connection 
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The obtained pendubot behaviour is illustrated on Figure 4. The figure that the system is 
slightly oscillating around the chosen equilibrium position. Approximately at the time of 23 s 
and 24,5 s there have been introduced a disturbances, which were successfully handled by the 
controller. 

 
Figure 4:  Experimental results 

(in the figure Phid and Thetad are derivations of the angles Phi and Theta) 

 

5 CONCLUSION 

The reported outcome is only a result of the initial research carried out on this physical 
pendubot system. Further investigation will be directed on more precise non-linear pendubot 
model and MPC strategies. 
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