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Abstract 

The paper presents investigation results concerning the accuracy analysis of calculating the defined stability 

factors of the Polish Power System on the basis of power system state matrix eigenvalues associated with 

electromechanical phenomena. The eigenvalues were calculated by analysis of the disturbance waveforms of the 

instantaneous power when taking into account introduction of a disturbance to different units. There were 

analysed the power swing waveforms occurring after introducing the disturbance in the form of a rectangular 

impulse of different height to the voltage regulation system of generators in generating units of different powers.  
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1 INTRODUCTION 

There occur various transient phenomena of different character and time horizon in a power system (PS) which 
is a very complex physical system. Depending on the phenomena and quantities describing the PS operating 
condition, the following kinds of the PS stability can be distinguished [1]: 

 angular stability, 

 voltage stability, 

 frequency stability. 

The angular stability is associated with maintaining synchronism of all synchronous generators working in PS 
generating units. Loss of synchronism of synchronous generators is identified with loss of the PS angular 
stability [2]. The angular stability is directly connected with electromechanical phenomena such as, among 
others, electromechanical swings. 

Maintaining the angular stability of a power system is one of the most important aspects of its work. Stability 
factors calculated on a basis of the PS state matrix eigenvalues can be used for assessing the PS angular stability 
[3]. The eigenvalues can be calculated from the PS state equations, however, the calculation results  then depend 
on the values of the system state matrix elements; they also – indirectly – depend on the assumed system models 
and their uncertain parameters [4]. The eigenvalues can also be calculated with good accuracy from analysis of 
the actual disturbance waveforms occurring in the PS after various disturbances [5].  

The goal of the paper is to determine the stability factors of the Polish Power System (PPS) with use of the 
eigenvalues calculated on a basis of the analysis of instantaneous power disturbance waveforms in PPS 
generating units.  

2 LINEARISED MODEL OF A POWER SYSTEM 

The power system model linearised around the working point is described by the state and output equations [6]: 

UBXAX   , (1) 

UDXCY Δ , (2) 

where: XΔ , UΔ , YΔ - deviations of the vectors of: state variables, inputs and output variables, respectively. 
The waveforms of input quantities of the linearised system model can be calculated directly by integrating the 
state equation, or by using the eigenvalues and eigenvectors of the state matrix A [6].  

Assuming only single eigenvalues of the state matrix, the vector of  state variables and the vector of output 
quantities can be described by [6]: 
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where:   V, W    right-    and     left-side   modal   matrices whose columns are right- and left-side normalised 
( 1T hh VW ) eigenvectors of the state matrix, respectively,   diagonal matrix in which the eigenvalues of the 
state matrix are placed on the main diagonal. 

In Eqs. (3) and (4) there were used the following relationships connecting matrices V, W, A and :

,T
AVWΛ   (5) 

.TT

WV
AVWA tt ee   (6) 

The waveform of the given output value is a superposition of the modal components which depend on the 
eigenvalues and eigenvectors of the state matrix. For example, in the case of a disturbance being a Dirac pulse of 
the j-th input value:  

ΔUj(t) = ΔUδ(t), (7) 

the i-th output value (at D = 0 and assuming only single eigenvalues) is [7]: 





n

h

t

ihi
heFY

1

 , (8) 

UF jhhiih  BWVC
T , (9) 

where: hhh  j  – h-th eigenvalue of the state matrix, ihF – participation factor of the h-th eigenvalue in 
the i-th output waveform, Ci – i-th row of C matrix, Vh - h-th right-side eigenvector of the state matrix, Wh – h-th 
left-side eigenvector of the state matrix, Bj – j-th column of B matrix, n – dimension of the state matrix A. The 
values h and ihF can be real or complex. 

In case of the waveforms of instantaneous power swings in PS, the eigenvalues associated with motion of 
generating units rotors, called electromechanical eigenvalues in the paper, are of decisive significance. They are 
complex conjugate eigenvalues with imaginary parts, which correspond to the frequency range (0.1-2 Hz), hence 
their imaginary parts fall into the range (0.63-12.6 rad/s). The electromechanical eigenvalues intervene in 
different ways in the instantaneous power waveforms of particular generating units, which is related to the 
different values of their participation factors. 

3 EXEMPLARY CALCULATIONS 

Calculations were carried out for the Polish Power System (PPS) model (Fig. 1) in which there were taken into 
account 49 selected generating units working in high and highest voltage networks as well as 8 equivalent 
generating units representing influence of PSs of neighbouring countries. 

The method for calculations of electromechanical eigenvalues used in investigations consists in approximation of 
instantaneous power waveforms in particular generating units with use of the expression (8). The 
electromechanical eigenvalues and participation factors of specific modal components are the unknown 
parameters of this approximation. In the approximation process, these parameters are iteratively selected to 
minimize the value of the objective function defined as a mean square error between the approximated and 
approximating waveform: 

    



N

i

ii ,PP,
1

2
)a()m(w FλFλ , (10) 

where: λ is the vector of electromechanical eigenvalues, F is the vector of participation factors, N – number of sam-
ples, the index m denotes the approximated waveform, while the index a denotes the approximating waveform of 
the instantaneous power P, calculated from the searched eigenvalues and participation factors.  

The objective function can also be written, based on expression (8), as: 
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Fig.1 Generating units included in the PPS model 

The eigenvalues with small participation factor moduli in particular waveform are neglected in calculations based 
on this waveform. The objective function (10) or (11) is minimized by a hybrid algorithm which is a serial 
combination of a genetic algorithm (Fig. 2a) with a gradient algorithm (Fig. 2b). The results of the genetic 
algorithm are the starting point of the gradient algorithm. The genetic algorithm seeks the global minimum of the 
objective function in the given interval of the parameters being determined. The starting point is sampled from 
the search interval, so it is not necessary to define it precisely. However, the algorithm is slowly convergent. The 
gradient algorithm is more quickly convergent, but it seeks the local minimum of the objective function, due to 
which the initial parameter values must be carefully selected to obtain correct results. The serial combination of 
genetic and gradient algorithms eliminates their basic disadvantages [7, 8]. 

For the purpose of calculations, the input data (approximated during the calculation) is the measured 
instantaneous power waveforms, but in order to verify the calculation method, the instantaneous power 
waveforms obtained from simulations with use of the PS model are employed. The eigenvalues and participation 
factors calculated from the assumed structure and parameters of the model are assumed to be the reference point 
[7]. 

Due to the existence of the objective function local minima in which the optimisation algorithm may freeze, the 
eigenvalues were calculated repeatedly based on the same waveform. If the objective function values were 
higher than a certain assumed limit, the results were rejected. The adopted final result of the calculations of real 
and imaginary parts of the particular eigenvalues were the arithmetic means from the real and imaginary parts, 
respectively, of the eigenvalues obtained from the results not rejected in further calculations. 

The analysed PS model was worked out in Matlab-Simulink environment. It consists of 57 models of 
generating units as well as the model of the network and loads.

The calculations presented in this paper consider the following models:  a synchronous  generator  GENROU [7], 
a static [7] or electromachine excitation system operating in the PPS, a steam turbine IEEEG1 [7] or water 
turbine HYGOV and, optionally, a power system stabilizer [9] (type PSS3B [7]). For the equivalent generating 
units representing influence of power systems of the neighbouring countries there was used the simplified model 
of a synchronous generator. 
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The assumed disturbance is a square pulse of the voltage regulator reference voltage in one of generating units. The 
system response to an input in the form of a short square pulse with a suitably selected height and length is close to 
that to a Dirac pulse. 
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Fig. 2. Flowcharts of algorithms: genetic (a) and gradient (b) 

The right selection of the height and length of the rectangular pulse of the voltage regulator reference voltage is 
an important factor which determines the accuracy of calculations. The amplitude of instantaneous power swings 
must be sufficiently high to allow separating these swings from the recorded waveforms of phase currents and 
voltages in individual system nodes. The amplitude increases with the increase in the pulse surface of the voltage 
regulator reference voltage, which can be expressed as: 

impref tVkP  , (12) 

where: ΔP – amplitude of the instantaneous power swing waveform, ΔVref – height of the square pulse of the 
voltage regulator reference voltage, timp – pulse length, k – proportionality gain. The pulse height ΔVref, however, 
must be limited to avoid a significant impact of nonlinearity and limits on the instantaneous power waveforms. 
The square pulse duration timp must also be limited, since its significant lengthening results in increasing 
differences in the system responses to the square and Dirac pulse, which can decrease the accuracy of 
determining electromechanical eigenvalues [7]. 

Since there are only several modal components of significant amplitude in the instantaneous power waveform of 
a single generating unit, it is necessary to analyse the instantaneous power waveforms of different generating 
units occurring at various place of disturbance input. 

Table 1   presents  the  results  of  the  modal  analysis   of  instantaneous   power  waveforms   after   introducing 
a disturbance to chosen generating units. For analysis, for each place of disturbance input, there were selected 
instantaneous power waveforms in which there occurred power swings of significant amplitudes. The following 
denotations are used in Table 1:   P0  – generating unit active power in steady state,    P – relative amplitude of 
instantaneous power swings (calculated as a   quotient of the instantaneous power swing amplitude    ΔP and the 
generating unit active power in steady state P0 – Fig. 3), λ – selected eigenvalues influencing the instantaneous 
power waveforms significantly (original eigenvalues are given in brackets), F – modules of the participation
factors (relative values referred to the largest absolute value of the participation factor in a given waveform). The 
state matrix of the analysed PPS model has 56 electromechanical eigenvalues. They were sorted in increasing 
order according to the real parts and numerated from λ1 to λ56. 
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Fig.3 The way of calculating the relative amplitude of instantaneous power swings P  

Tab.1 Results of modal analysis of instantaneous power waveforms for selected places of disturbance input 

Place of disturbance 
input  

Place of occurence of 
power swings  

 P0 P  λ F

MW p.u. 1/s p.u. 

KOZ212 

KOZ212 1140.1 0.1097 

λ29 (-0.8716±j9.5518) 0.1665 
λ31 (-0.8524±j9.5702) 1 
λ37 (-0.7670±j8.5753) 0.2556 
λ46 (-0.4788±j7.6653) 0.3189 
λ49 (-0.1710±j4.9780) 0.1328 

KOZ112 382.1 0.0757 

λ29 (-0.8716±j9.5518) 0.1702 
λ31 (-0.8524±j9.5702) 1 
λ37 (-0.7670±j8.5753) 0.2889 
λ38 (-0.4165±j8.0932) 0.1661 
λ46 (-0.4788±j7.6653) 0.2711 

STW122 172.6 0.0557 

λ37 (-0.7670±j8.5753) 1 
λ38 (-0.4165±j8.0932) 0.2334 
λ40 (-0.6723±j8.6222) 0.1538 
λ42 (-0.6372±j8.3382) 0.2820 
λ46 (-0.4788±j7.6653) 0.5316 

STW112 117.8 0.0518 

λ29 (-0.8716±j9.5518) 0.9508 
λ31 (-0.8524±j9.5702) 1 
λ38 (-0.4165±j8.0932) 0.2053 
λ46 (-0.4788±j7.6653) 0.2176 

ZRC415 701.3 0.0491 

λ37 (-0.7670±j8.5753) 0.1681 
λ42 (-0.6372±j8.3382) 0.1680 
λ46 (-0.4788±j7.6653) 0.1670 
λ47 (-0.4488±j6.6540) 1 
λ49 (-0.1710±j4.9780) 0.9524 

DBN113 

DBN113 335.8 0.2058 

λ32 (-0.8499±j9.6756) 1 
λ40 (-0.6723±j8.6222) 0.1274 
λ41 (-0.6417±j8.8039) 0.5788 
λ43 (-0.5910±j8.5763) 0.4981 
λ44 (-0.5713±j8.5011) 0.1664 

DBN133 335.8 0.0656 

λ32 (-0.8499±j9.6756) 1 
λ41 (-0.6417±j8.8039) 0.3671 
λ43 (-0.5910±j8.5763) 0.3454 
λ44 (-0.5713±j8.5011) 0.1186 

From Table 1 it follows that the disturbance in the generating unit KOZ212 (of large apparent power of 
generator) caused large power swings both in that unit and several other ones. Namely, the large power swings
occurred not only in the generating unit KOZ212 located in the close neighbourhood of the generating unit 
KOZ212, but also in the generating units STW122, STW112 and ZRC415 located in a significant distance from 
the generating unit KOZ212 (Fig. 1). There are five modal components of significant amplitudes in the 
instantaneous power waveform of the unit KOZ212. There are four from among those modal components in the 
instantaneous power waveform of the unit KOZ112, and proportions of their amplitudes are similar as those in 
case of the instantaneous power waveform of the unit KOZ212. In the instantaneous power waveform of the unit 
KOZ112 there is also one modal component not occurring in the instantaneous power waveform of the unit 
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KOZ212. In the instantaneous power waveforms of the units STW122, STW112 and ZRC415 there occur some 
of the components occurring in the instantaneous power waveform of the unit KOZ212 and the modal 
components not occurring in that waveform. However, it can be noted that those modal components which also 
occur in the instantaneous power waveform of the unit KOZ212 are dominant in the instantaneous power 
waveforms of the units STW122 and STW112. In case of the instantaneous power waveform of the unit ZRC415 
there is a deviation from that rule, since the modal component of the largest amplitude in that waveform does not 
occur in the instantaneous power waveform of the unit KOZ212. However, the modal component of the second 
largest amplitude occurs in the instantaneous power waveform of the unit KOZ212. The disturbance in the unit 
DBN113 of small generator rated apparent power caused power swings of significant amplitude only in that unit 
and in the unit DBN133 neighbouring with DBN113. In the instantaneous power waveform of the unit DBN133 
there does not occur one of the modal components occurring in the instantaneous power waveform of the unit 
DBN113. None additional modal components occur in it, either. Proportions of the amplitudes of the modal 
components in the instantaneous power waveforms of the units DBN113 and DBN133 differ significantly. 

Table 2 presents electromechanical eigenvalues λ calculated directly by a program Matlab-Simulink on a basis of 
the PPS model (called original eigenvalues in the paper) and absolute errors Δλ of calculating those eigenvalues 
on a basis of the instantaneous power waveforms. 

Tab.2 Original eigenvalues and absolute errors of calculations of these eigenvalues 

h 1 2 3 4 5 
λh, 1/s -1.3099±j11.1792 -1.2866±j11.5541 -1.2768±j10.1287 -1.2123±j9.4372 -1.1925±j10.9116 
Δλh, 1/s -0.0377 j0.3307 0.0746 j0.0033 -0.0106 j0.0649 0.0284±j0.1082 0.0859 j0.1185 
h 6 7 8 9 10 
λh, 1/s -1.1670±j10.8599 -1.1669±j10.1882 -1.1405±j10.6099 -1.0939±j9.8686 -1.0867±j10.9129 
Δλh, 1/s -0.0495±j0.0872 0.0215 j0.1457 0.0420±j0.1233 0.0358±j0.1090 0.0022 j0.2474 
h 11 12 13 14 15 
λh, 1/s -1.0627±j10.3843 -1.0615±j10.2550 -1.0559±j10.3520 -1.0520±j10.3293 -1.0477±j10.0241 
Δλh, 1/s -0.0328±j0.0576 0.0600±j0.0474 -0.0115±j0.0876 0.0676 j0.1348 -0.0061±j0.0214 
h 16 17 18 19 20 
λh, 1/s -1.0449±j10.2168 -1.0231±j9.6776 -1.0087±j10.2941 -0.9956±j9.7503 -0.9937±j10.3461 
Δλh, 1/s -0.0328±j0.0254 -0.0110±j0.1274 -0.0389 j0.1256 -0.0035 j0.1107 0.0582±j0.0746 
h 21 22 23 24 25 
λh, 1/s -0.9925±j10.1970 -0.9896±j10.3399 -0.9891±j10.3132 -0.9843±j9.1122 -0.9591±j10.1540 
Δλh, 1/s -0.0163±j0.1737 0.0440±j0.1682 0.0120±j0.0465 0.0769 j0.0399 -0.0595 j0.0466 
h 26 27 28 29 30 
λh, 1/s -0.9005±j9.5251 -0.8831±j9.4212 -0.8749±j9.9664 -0.8716±j9.5518 -0.8660±j9.8514 
Δλh, 1/s -0.0687±j0.1609 0.0844 j0.1723 0.0471 j0.1695 -0.0111±j0.0301 -0.0440 j0.0883 
h 31 32 33 34 35 
λh, 1/s -0.8524±j9.5702 -0.8499±j9.6756 -0.8226±j9.1135 -0.8136±j9.6312 -0.7888±j8.5214 
Δλh, 1/s 0.0186 j0.1181 0.0220±j0.1535 0.0179±j0.0287 -0.0813±j0.0925 0.0139 j0.0320 
h 36 37 38 39 40 
λh, 1/s -0.7765±j9.1363 -0.7670±j8.5753 -0.7501±j9.0125 -0.7368±j9.6011 -0.6723±j8.6222 
Δλh, 1/s -0.0086±j0.0195 -0.0054±j0.0942 -0.0751 j0.0168 -0.0383±j0.2604 0.0731 j0.0028 
h 41 42 43 44 45 
λh, 1/s -0.6417±j8.8039 -0.6372±j8.3382 -0.5910±j8.5763 -0.5713±j8.5011 -0.4955±j7.3005 
Δλh, 1/s -0.1158 j0.0635 0.0646±j0.0754 -0.0595 j0.8201 -0.0818 j0.0409 0.0293 j0.2115 
h 46 47 48 49 50 
λh, 1/s -0.4788±j7.6653 -0.4488±j6.6540 -0.4165±j8.0932 -0.1710±j4.9780 -0.0884±j7.7781 
Δλh, 1/s 0.0691±j0.1107 -0.0277±j0.0088 0.0138±j0.0976 -0.0340±j0.1444     - 
h 51 52 53 54 55 
λh, 1/s -0.0835±j5.6278 -0.0826±j6.9521 -0.0744±j5.5362 -0.0671±j9.3707 -0.0568±j3.4772 
Δλh, 1/s -0.0745±j0.4093     -     -     -     - 
h 56 
λh, 1/s -0,0457±j4.0116 
Δλh, 1/s 0.0272 j0.0939 

From Table 2 it follows that almost all eigenvalues were calculated with the satisfactory accuracy. The exception 
is the real part of the eigenvalue λ41 and imaginary parts of the eigenvalues λ43 and λ51which were calculated with 
the worse accuracy. The eigenvalues λ50 and λ52 - λ55 were not calculated on a basis of the instantaneous power 
waveforms since the modal components associated with them did not influence the instantaneous power 
waveforms of any of the PPS generating units strongly enough. 
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For instance, Fig. 4 shows the instantaneous power disturbance waveforms of the generating unit KOZ212 
(Kozienice power plant) when introducing a disturbance to that unit. 
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Fig. 4 Instantaneous power disturbance waveforms of the generating unit KOZ212 

From Fig. 4 it follows that the quality of approximating the instantaneous power waveforms with the hybrid 
algorithm is worse in the time range of about 0.5 s after occurrence of the disturbance, which is caused by the 
influence of strongly damped modal components not associated with the electromechanical eigenvalues. In order 
to eliminate the influence of those modal components, the analysis of the waveform is started after 0.5 s since the 
disturbance occurrence [10]. 

The following stability factors were used for assessing the PPS angular stability [3]: 
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Only real part of this electromechanical eigenvalue which is connected with the least damped modal components 
of electromechanical quantities decides on the value of the factor W1. The value of the factor W2 is determined by 

the maximal relative damping factor of electromechanical eigenvalues 
22
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  which is also influenced 

by the imaginary part of the electromechanical eigenvalue (associated with the frequency of electromechanical 
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undetermined for unstable systems. 

The values of stability factors (13) determined on a basis of original and calculated by means of the hybrid 
algorithm eigenvalues are compared in Table 3. There are given the absolute errors of calculating the stability 
factors by means of the hybrid algorithm. 

Tab.3 Calculation results of stability factors 

Calculated based on original eigenvalues Calculated based on calculated eigenvalues Error 
W1 -0.1710 -0.2050 -0.0340 
W2 -0.0343 -0.0400 -0.0057 
W3 -1.5335 -1.3805 0.1530 

4 SUMMARY 

The investigations performed allow to draw the following conclusions: 

 It is possible to determine electromechanical eigenvalues, and based on them to calculate PPS stability 
factors, on a basis of the analysis of the instantaneous power waveforms in disturbance states. The higher 
participation of modal components associated with the calculated eigenvalues in the instantaneous power 
waveform is, the more accurate calculations of eigenvalues based on that waveform are. The larger modal 
component participation factor module, the greater influence of the eigenvalue associated with this modal 
component on the instantaneous power waveform shape, hence on the value of the objective function minimised 
by the optimisation algorithm. 
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 Use of the hybrid algorithm being a series connection of genetic and gradient algorithms allows eliminating 
the basic weaknesses of those both algorithms. Use of a genetic algorithm at the first stage of approximation 
eliminates the need of precise determination of the starting point, which allows obtaining good results in spite of 
the wide range of solution search. 

 Repeated calculations of eigenvalues with the hybrid algorithm, at different starting points sampled at each 
calculation from the seek range, eliminates the problem of algorithm freezing at local minima of the objective 
function. The calculation accuracy is increased by comparing the eigenvalues calculated from the instantaneous 
power waveforms of various generating units. 

 From the investigations performed it follows that the eigenvalue λ49 is of decisive significance for the PPS 
angular stability. That eigenvalue has the largest (of the smallest absolute value) real part from among the eigen-
values interfering in a significant way in the instantaneous power waveforms of generating units working in PPS. 
The eigenvalue λ49 has the largest values of the participation factor module in the instantaneous power 
waveforms of the generating units ZRC415 and KON124. It has also  large values of  the participation factor 
modules in the instantaneous power waveforms of, among others, the generating units PAT114, ADA214, 
KON214, KON224 and PEL412. 

 The calculation error  of the stability factor  W2   appeared  to  be  the  smallest one   (considering  its  module). 
A little greater is the calculation error of the stability factor W2. The largest is the calculation error of the stability 
factor W3 . 
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