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Abstract: A parametric description of all static output feedback stabililizing controllers for switching 
diffusion systems is presented. This description is expressed in terms of coupled linear matrix equations 
and non-convex quadratic matrix inequalities which depend on parameter matrices similar to weight 
matrices in LQR theory. A convexifying approximation technique is proposed to obtain the LMI-based 
algorithms for computing of the gain matrix. These are non-iterative and used computationally efficient 
SDP solvers.The results are then applied to simultaneous stabilization of a set of diffusion systems, 
robust stabilization and stochastic passification problems. 
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1 INTRODUCTION AND PRELIMINARIES 

The problem of stabilization via static output feedback is a tricky problem in the modern 
control theory. On the one hand there exists a lot of necessary and sufficient conditions of 
stabilization on the other hand these conditions are hard to implement and can impose very 
difficult numerical problems. A survey of static output-feedback control is given in (Syrmos et 
al, 1997). A lot of work has been pursued after publication of this survey (Crusius and Trofino, 
1999, Gadewadikar et al, 2007, Rosinova et al, 2003, Yu, 2004) and references therein, 
however several problems are still open. Moreover there exist few results concerning these 
problems for the class of stochastic systems (Pakshin and Soliviev, 2009) and references 
therein. Main objective of this paper is to present a LQR type parameterization of static output 
feedback controllers for continuous-time diffusion systems with Markovian switching. That 
parameterization is derived from classical LQR parameterizations of state-feedback controllers 
with restrictions to have an output-feedback structure (Gadewadikar et al, 2007). Based on this 
parametrization a new approach to design of static output feedback stabilizing control is 
developed. This approach leads to algorithms for computation of stabilizing gain which may be 
implemented with existing semi-definite solvers such as SeDuMi (Sturm, 1999) and easily 
coded in Matlab environment using YALMIP (Lofberg, 2004). It turns out that particular cases 
of obtained result give effective solution for simultaneous stabilization, robust stabilization and 
passification via static output feedback control.  

2 PROBLEM STATEMENT 

Consider switching diffusion system (Kats and Martynyuk, 2002; Yin and Zhu, 2009) 
described by the following equations  
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where ( ) nxx t ∈R  is the continuous component of the state, ( ) nuu t ∈R  is the control input 

vector; ( )
nyy t ∈R  is the output vector; ( ) ( 0)r t t ≥  is the discrete component of the state, 

taking values in a finite set = {1, , }NN … ; this component is modeled by homogeneous 
Markov chain with the mode transition probabilities  
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, , > 0 ( )iji j i jπ∈ ≠N  denotes the switching rate from mode i  at time t  to mode j  at time 

t h+  for > 0h  and = ;
N

ii ij
i j
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−∑  the Markov chain transition rates matrix is defined by 

1= [ ]N
ijπΠ ; ( ) ( = 1, , )l l mγ ⋅ …  are positive scalars; T

1( ) = [ ( ) ( )]mw t w t w t…  is the mR -valued 
standard Wiener process defined on the probability space ( ,F, )Ω P  with natural filtration {F}t ; 
for ( )r t ∈N  the system matrices and scalar parameters of the i -th mode are denoted by 

, , , ,i i li li iA B A B C  and liγ  which are real known with appropriate dimensions; the initial 
conditions 0 0(0) = , (0) =x x r r  are deterministic.  

The two-component process T[ ( ) ( )]x r⋅ ⋅  in the hybrid space xn ×R N  satisfying (1), (2) is 
termed a switching diffusion or a mode (regime)-switching diffusion. The components ( )x t  
and ( )r t  are called continuous and discrete ones corresponding to their sample path properties. 

Assume that the switching static output feedback control has the form  

 ( ) = ( ), if ( ) = , .iu t F y t r t i i− ∈N   (3) 

The purpose of the paper is to describe in terms of the LQR-type parameters all the gain 
matrices in (3), such that the system (1), is exponentially stable in the mean square (ESMS) 
(Kats and Martynyuk, 2002; Yin and Zhu, 2009) and to derive LMI based algorithms (Boyd et 
al, 1994; Lofberg, 2004; Sturm, 1999; ) for computing these gain matrices. The paper extends 
to the class of switching diffusion systems the results obtained by the authors in (Pakshin and 
Peaucelle, 2009, a, b; Pakshin, Peaucelle and Zhilina, 2009). 

3 LQR PARAMETRIZATION OF ALL STABILIZING GAINS 

The following theorem gives a parametric description of all stabilizing static output feedback 
gains in LQR terms. 

Theorem 1  There exists a gain matrix iF  such that the system (1), (2) is exponentially stable 
in the mean square if and only if there exist parameter matrices T T= 0, = > 0i i i iQ Q R R≥  such 
that  

 1 T T= [ ( )] [ ( ) ], ,i i i i i i i i i iFC R P B P P L i−+ Γ +Θ + ∈N   (4) 

where T= > 0i iP P  and ( )iL i∈N  is a solution to the system of coupled matrix inequalities  
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There is no known methods for solving the nonstandard system of coupled matrix inequalities 
(4), (5). We propose some convex sufficient conditions which allow to obtain LMI-based 
algorithms for computing of the gain matrix 

This theorem is continuous-time counterpart of the result by (Pakshin and Soloviev,2009) and 
its proof is omitted. 

4 CONVEX SUFFICIENT CONDITIONS AND ALGORITHMS 

As for the general static output feedback design, there is no known exact convex methodology 
for the design of the gain matrix ( )iF i∈N . Based on existing convexifying techniques, we 
provide now two conservative LMI based results for the problem. Each of these techniques 
may possibly fail even if stabilizing gains exist, yet in practice, one or the other, happens to be 
successful on examples. 

4.1 Convex approximation I 
Assume given matrices iQ , iR  and ( )iL i∈N  and let a scalar ( )i iμ ∈N  sufficiently large for 
the following inequality to hold  

 
T
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 Assume as well T 0 ( )i iP P i= > ∈N solution to the coupled Riccati equations  

 T 1 T T

=1

[ ( )][ ( )] [ ( ) ] (1 ) = 0.
N

i i i i i i i i i i i i i i i ij j i i
j

A P P A PB P R P B P P P Qπ μ−+ − +Θ +Γ +Θ + + +∑  (7) 

 Taking into account (5) we easily obtain from (6):  
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 The equation (4) has exact solution with respect to gain matrix only for special form of the 
right hand side. According to (Skelton et al., 1997) this equation is solvable with respect to if 
and only if  

 [ T T( ) ]( ) = 0,i i i i i i iB P P L I C C++Θ + −   (8) 

 where C+ stands for the Moore-Penrose inverse of C . Moreover the solution of (4) is then 
given by  



P. Pakshin et al / Journal of Cybernetics and Informatics 10 (2010)  29-38 32 
 

 

 1 T T= [ ( )] [ ( ) ] .i i i i i i i i iF R P B P P L C− ++ Γ +Θ +   (9) 

These conditions can be also formulated in terms of singular value decomposition of the output 
matrix iC  (Gadewadikar et al.,2007; Yu, 2004; Pakshin and Soloviev, 2009). 

So we have the following result  

Corollary 1 Let for some scalar 0iμ >  and parameter matrices T 0,i iQ Q= ≥  
T 0 ( )i iR R i= > ∈N  the system of coupled Riccati equations (7) has positive definite 

solution T 0i iP P= >  satisfying (6), (8) for some matrix ( )iL i∈N . Then the control law (3) with 
the gain matrix given by (9) provides ESMS of the system (1).  

Based on convex sufficient conditions of Corollary 1 and LMI based method to solution of 
Riccati equation (Ait Rami and El Ghaoui, 1996) we can formulate the following algorithm for 
the design of stabilizing gains iF . 

Algorithm 1 

Step 1 Assign matrices T 0,i iQ Q= ≥  T 0 ( )i iR R i= > ∈N , scalar 0iμ >  based on LQR 
reasons and solve the following LMI optimization problem with respect to variables 

T 0i iP P= >  and iL : 
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Step 2 If the LMI problem on the previous step is feasible then compute a static output 
feedback gain by the formula (9) 

Step 3 If the LMI with respect to variables ( )iS i∈N   

 T 2 T

1 1
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N m
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j l
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is feasible, then ( )iF i∈N  given by (9)is a ESMS gain.  

4.2 Convex approximation-II 

Let for some parameter matrices T 0,i iQ Q= ≥  T 0 ( )i iR R i= > ∈N  the following system of 
linear matrix inequalities with respect to variables T 0i iX X= >  and iY  holds: 
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Following to (Crusius and Trofino, 1999) assume that there exists a decision variables 
( )iZ i∈N  such that 

 i i i iC X Z C=   (11) 

and suppose 

 1.i i iF Y Z −=   (12) 

Denote 1 ( ).i iP X i−= ∈N  Then taking into account (11), (12) and using Schur complement 
arguments rewrite (10) in the following form 
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Because T 0i iP P= >  it follows from (13) that system (1)-(3) is ESMS and stabilizing gain is 
given by (12)  

So we have the following result  

Corollary 2 Let for some parameter matrices T 0,i iQ Q= ≥  T 0 ( )i iR R i= > ∈N  the system of 
coupled linear matrix equations and inequalities (10), (11) with respect to variables ,i iX Y  and 

( )iZ i∈N  is feasible. Then the control law (3) with the gain matrix iF  given by (12) provides 
ESMS of the system (1). 

Based on these sufficient conditions it is easy to formulate the algorithm for obtaining of the 
stabilizing gain. 

Algorithm 2 

Step 1. Assign matrices T 0,i iQ Q= ≥  T 0 ( )i iR R i= > ∈N , based on LQR reasons and solve 
the LMI/LME problem (10), (11) with respect to variables ,i iX Y  and ( ).iZ i∈N  

Step 2. If the LMI/LME problem on the previous previous step is feasible then compute the 
static output feedback stabilizing gain matrix iF  by the formula (12).  
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5 APPLICATION TO SIMULTANEOUS STABILIZATION PROBLEM 

The particular case = , 0, ,i ijF F i jπ ≡ ∈N  corresponds to the problem of simultaneous 
stabilization of the set of linear diffusion systems 
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 via output feedback with constant gain 

 ( ) = ( ).u t Fy t−   (15) 

Corollary 3 Let for some scalar 0iμ >  and parameter matrices T 0,i iQ Q= ≥  
T 0 ( )i iR R i= > ∈N  the system of coupled Riccati equations  
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has positive definite solution T 0i iP P= >  satisfying  

 

T
T T

1 T T

1 T T
1 1 1 1 1 1 1 1 1

> 0, ( ) ]( ) = 0,
( )

[ ( )] [ ( ) ]

[ ( )] [ ( ) ] ,

i i i
i i i i i i i

i i i i

i i i i i i i i i

i i i i i i i i i

Q L
B P P L I C C

L R P

R P B P P L C

R P B P P L C i

μ +

− +

− +
+ + + + + + + + +

⎡ ⎤
+Θ + −⎢ ⎥+ Γ⎣ ⎦

+ Γ +Θ +

= +Γ +Θ + ∈N

  (17) 

for some matrix ( )iL i∈N . Then the control law (15) with the gain matrix given by  

 1 T T[ ( )] [ ( ) ]i i i i i i i i iF R P B P P L C− += + Γ +Θ +   (18) 

for some i∈N  provides ESMS of all the systems (14).  

Based on that result and with the same methodology one gets the following algorithm to 
produce simultaneously stabilizing gains. Note that as the previous algorithm it is used the 
same conservative assumptions. Moreover, in order to have a unique feedback gain for all 
systems two additional assumptions in the form of the equality constraints are added.  

Algorithm 3 

Step 1 Assign matrix T 0,i iQ Q= ≥ and, scalar 0 ( )i iμ > ∈N  based on LQR reasons and 
solve the following LMI optimization problem with respect to variables 
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Step 2 If the LMI optimization problem on the previous step is feasible then compute a static 
output feedback gain by the formula (18) 

Step 3 If the LMI with respect to variables ( )iS i∈N   

 T 2 T
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( ) ( ) ( ) ( ) 0
m

i i i i i i i i li li li i i li li i
l

A B FC S S A B FC A B FC S A B FCγ
=

− + − + − − <∑  

is feasible, then the control law with the gain matrix F  given by formula (18)is simultaneously 
stabilizing one.  

6 APPLICATION TO ROBUST STABILIZATION PROBLEM 

Assume now that the pairs of matrices ( )i iA B  are vertices of a polytope defining an uncertain 
model in which the matrix C  defining measurements is uncertainty independent and assume 
one seeks for a unique Lyapunov matrix = ( ).iP P i∈N  This case corresponds to the problem 
of quadratic stabilization via output feedback (15) of the linear system with polytopic 
uncertainty  

 =1

( ) = ( )[ ( ) ( )],

( ) = ( ), ,

N

i i i
i

x t t A x t B u t

y t Cx t i

ξ +

∈

∑�

N
  (19) 

where ( )1( ) = ( ) ( )Nt t tξ ξ ξ…  belongs for all t  to the simplex  
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∑  

Results of Theorem 1 apply and produce the following corollary. 

Corollary 3 There exists a gain matrix F  such that the uncertain system (19), (15) is 
quadratically stable if and only if there exist parameter matrices T T= 0, = > 0i i i iQ Q R R≥  such 
that  

 1 T= [ ], ,i i iFC R B P L i− + ∈N  

 where = > 0TP P  and ( )iL i∈N  is a solution to the system of matrix inequalities  

 T 1 T T 1 < 0, .i i i i i i i i iA P PA PB R B P Q L R L i− −+ − + + ∈N  

Based on this corollary and with the the same methodology as upper we can formulate the 
following robust stabilization algorithm. Its conservatism is analogous to the previous ones, 
only with the assumption that the C  matrix is unique for all uncertainties. 

Algorithm 4 

Step 1 Assign matrices iQ  and iR , based on LQR reasons on the vertices of the polytope and 
solve the LMI/LME problem with respect to variables , ,iX Y Z and K   
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Step 2 If the problem (20) is feasible then compute the static output feedback stabilizing gain 
matrix by the formula  

 1=F KZ −   (21) 

It is easy to see that Algorithm 2 and Algorithm 3 can be also applied with corresponding 
conservative assumptions. 

7 STOCHASTIC PASSIVITY AND PASSIFICATION 

 Stochastic passivity and dissipativity properties have been studied in (Florchinger, 1999; 
Pakshin, 2007; Yaesh and Shaked, 2009) and references therein. We consider here the 
following definition which is a particular case of stochastic exponential dissipativity, see 
(Pakshin, 2007) and it is stochastic counterpart of G -passivity, see (Andrievskii and Fradkov, 
2006). Define for the system (1) some input w   and the output z of the same dimensions by the 
formula  

 ( ) = ( ( )) ( ) ( ( ) ( ),z t G r t y t D r t w t+    (22) 

 where G  and D  are matrices of compatible dimension. System (1) is said to be stochastically 
G -passive with respect to input w  and output z  if there exists nonnegative scalar function 

( , ) ( , )xnV x i x i∈ ∈R N  and scalar function ( , ) > 0x iμ  for 0x ≠  ( , )xnx i∈ ∈R N  such that  

 T

0

( ( ), ( )) ( , ) [ ( ) ( ) ( ( ), ( ))] ,
t

xi xiV x t r t V x i w s z s x s r s dsμ≤ + −∫E E   (23) 

 for each solution of the system (1) with deterministic initial conditions (0) = , (0)x x r i= , 
where xiE  is expectation operator with (0) = , (0)x x r i= . 

The stochastic passification problem is to find the pair of matrices ( , ) ( )i iF G i∈N  such that 
the system (1) with reference input w  and with static output feedback  

 ( ) = ( ) ( ( )) ( )u t w t F r t y t−   (24) 

 is exponentially stable in the mean square and stochastically G -passive with respect to input 
w  and output z .Consider T T( , ) = , = > 0 ( , )xn

i i iV x i x H x H H x i∈ ∈R N  as a candidate storage 
function and let T T T( , ) = , = > 0i i ix i x W x W Wμ ( , )xnx i∈ ∈R N , then according to (Pakshin, 
2007) and (23) the stochastic G -passivity conditions with respect to input (24) and output (22) 
can be written as  
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 where = , =ci i i i i cli li li i iA A B FC A A B FC− − .  

If matrix ( )iF i∈N  is known then these bilinear matrix inequalities will be LMIs with respect 
to matrix G  and the passification problem can be solved in the following way. Find the matrix 

( )iF i∈N  using Algorithm 1 or 2. Then for obtained matrix ( )iF i∈N  find matrices ( )iG i∈N  
and ( )iD i∈N  as a solution of LMI (25).  

Note that given a ESMS gain ( )iF i∈N , any matrix ( )iG i∈N  is solution to the problem if one 
takes ( )iD i∈N  positive definite with sufficiently large eigenvalues. But recall that ( )iD i∈N  
is some parallel feedthrough gain. In practice one would expect it to be zero. Hence it is 
required to have ( )iD i∈N  as close to zero as possible and hence the LMIs should be solved 
along with some minimization of the norm of ( )iD i∈N  for example by performing  

 T

1
min Trace( ), 0

N

i i i
i

D D D
=

+ ≥∑  .i∈N  

It one gets at the optimum = 0 ( )iD i∈N  then passivity is demonstrated with respect to the 
output ( ) = ( ( )) ( )z t G r t y t . 

8 CONCLUSIONS 

 LQR type paramerization of static output feedback gains for linear diffusion systems with 
Markovian switching is proposed. This parametrization gives more complicated non-convex 
relations than original Lyapunov like inequalities, but it turns out that convex approximation 
technique can be effectively used to these relation to obtain LMI-based algorithm for 
computing of stabilizing gain. This result then applied to simultaneous and robust stabilization 
and robust passification problems. The results are conservative because additional 
convexifying restrictions. The evaluation of the degree of conservatism is an interesting open 
problem. 

The reader is addressed to (Pakshin and Peaucelle, 2009, a,b; Pakshin, Peaucelle and Zhilina, 
2009) for computation details connected with the example of angular longitudinal stabilization 
of aircraft with uncertain parameters via static output feedback. The passive output design 
procedure is also considered for this example. 
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