
 
 
 
 

Journal of Cybernetics  
and Informatics 

published by 

Slovak Society for 
Cybernetics and Informatics 

 
Volume 10, 2010 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.sski.sk/casopis/index.php (home page) 
 

 

ISSN:  1336-4774 

 

 



 Journal of Cybernetics and Informatics  10 (2010)                                  
http://www.sski.sk/casopis/index.php 

MULTIVARIATE STATISTICAL METHODS FOR INDUSTRIAL 
PROCESS PROGNOSTICS 

Bratina Božidar and Boris Tovornik 
University of Maribor, Faculty of Electrical Engineering and Computer Science 

Smetanova 17, 2000 Maribor, Slovenia 
Tel.: +386 2 220 7170  Fax: +386 2 220 7272 

e-mail: bozidar.bratina@uni-mb.si 

Abstract: The paper deals with multivariate statistical methods used for failure prognostics in industrial 
processes. Modern on-line process monitoring system should support classic fault detection, isolation 
and diagnosis (FDI) sub-systems to avoid process down-time, increase production, optimize parameters 
of the production line, etc. However faults usually demand immediate intervention by operator, 
therefore by using reliable prognostic system, risks can be avoided, maintenance intervals can be 
scheduled, operation and production strategy can be updated, etc. Presented methods are intended for 
operator’s visual detection of process deviation (along with automated FDI systems) while process 
monitoring, diagnosis and data analysis tasks are running. By understanding nominal process operation, 
a hardly detectable small faults and drifts can be used to predict failure scenarios in process prognostics.  

Keywords: Fault detection and isolation, prognostics, principal component analysis, multivariate 
statistical analysis. 

1 INTRODUCTION  

Failure prognostics is emerging as the next logical step towards improved system condition 
based maintenance, beside classic fault detection and diagnostics techniques (FDID). These 
methods form system health management (HMS) platforms which contribute to longer and 
reliable operation of systems enable them prediction of process operation, maintenance 
schedules, remaining useful life of system components, system reconfiguration, optimisation, 
etc. In the Artificial Intelligence community prognostics is yet becoming popular as a 
discipline and differentiates from fault detection and isolation objective, as it detects precursor 
of failures and predicts remaining time to failure to occur. From technical or production point 
of view such information are important for operator to prevent un-necessary process down-
time, therefore reduces considerable money loss (customer penalty, safety violation, reduced 
production plan).  

Technique for prediction of the system can be developed using raw measurement data or 
suitable models of processes, upon which the prognostics is realized. Each type has its own 
advantage (transparency, implementation) therefore various methods can be combined. Most of 
them come from the field of artificial intelligence and soft computing. In survey paper 
(Schwabacher, Goebel, 2008) many developed algorithms are divided into two groups; model-
based and data-based algorithms, similar to FDID concepts. Other authors sometimes have 
different classification depending on the field and discipline their work relies on. Very popular 
are multivariate statistical methods, derivations of Monte Carlo method, support vector 
machine learning algorithms, Kalman filters, neural networks, fuzzy logic, etc. More about 
development and various prognostic techniques can be found in references at the end.
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In the paper multivariate statistical analysis is used (principal components (PCA), nonlinear 
principal components), to achieve very precise detection and prediction of sensor degradation. 
Algorithm is developed in Matlab/Simulink and communication to laboratory hydraulic model 
is realized by OPC interface. Scenario of level sensor degradation (artificial aging) in the tank 
and pipe clogging (simulation of mineral coating on pipe’s inner wall) were tested on the 
laboratory model, where prognostic system operates under local close-loop. 

2 MULTIVARIATE STATISTICAL METHOD FOR PROGNOSTICS 

Process industry demands reliable operation therefore any process interruptions and 
unnecessary changes are usually avoided. However the trend of modern SCADA platforms is 
integration of various advanced and modern control and FDID algorithms which as a stand-
alone system provide critical information to the operator. Today these platforms usually 
include basic statistical methods with simple pre-processing algorithms to obtain system health 
information or basic insight into the process behaviour. For example, a faulty measurement of 
degraded sensor performance (aging) can bring the system into unstable operation, so early 
detection and prediction will this lead to a failure, when and what effect will the fault have to 
the process output quality is very important. Imagine a batch in a biochemical industry where 
the growth process of test cells takes a few months. Cells have to be maintained under certain 
environment conditions (temperature, pressure...) during the production cycle to comply to 
Food and Drug Administration regulations. By implementing prognostic methods, prediction, 
FDI, and online batch monitoring of process deviations can be registered and analysed before 
the batch is finished (using only a small portion of measured data). In case of unpredicted 
events a prediction of what-if scenarios can be analysed, or time can be determined to reliably 
solve the situation before the batch will have to be rejected due to bad quality, etc. Similar 
scenarios can be projected to other industrial processes.  

Multivariate statistical methods proved to be easy to implement and satisfactory for many basic 
tasks in industry, however simplicity has the consequence to accuracy. So to improve 
prognostic system instead of linear and simple tools, nonlinear techniques should be taken into 
consideration. Since modern SCADA systems have implemented data acquisition services, 
statistical model of the process can be obtained upon these large process history datasets by 
using various tools e.g. principal component analysis, partial least squares, etc. The classic 
PCA method does not require much of a processing power and is simple to implement, 
therefore has been widely used in many fields: image compression, fault detection, 
dimensionality reduction of data (gene expression, meteorology, medicine), etc. It can handle 
high dimensional and correlated process variables, provides a natural solution to the errors-in-
variables problem and includes disturbance decoupling. However, main drawback lies in 
linearity therefore a lot of research was invested to nonlinear extension in order to achieve 
better fittings to process behaviour.  

Principal component analysis is in FDI field very popular for extracting information from 
measured data which can also serve as visual information of process operation changes. By 
observing changes of principal components system behaviour can be monitored and production 
quality can be maintained. In mathematical term, PCA is performed from aigenvalue 
decomposition of the covariance matrix from the original measurements. Data matrix X 
containing n rows with observation of p correlated variables is transformed into independent 
variables in score matrix T: 

       ' '      
1

X X P D P T XP
n
⋅

= ⋅ ⋅ =
−

 (1)

If sufficient process variation is explained with only first few PCs, some columns of loading 
matrix P can be eliminated. The PCA estimate of X is then estimated with residual error E: 
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       'est k k kX T P E= +  (2)

Subscript k denotes the number of retained principal components. 

For evaluation of unpredicted behavior statistical measures e.g. Hottteling T2 or Q-norm can be 
used to define residual bounds for detection any process deviation. Complementary to such 
distance-based measures, a visual representation can be used in a form of quantitative analysis 
for reduced performance monitoring. For this task the Euclidean concept of distance is useful 
(Raich and Cinar, 1995) when observing changes of PCs’ angles (comparison in 2D or 3D 
space). Observing distance between points, the Euclidian angle between points a and b with 
vertex at the origin, can similarly be defined for higher dimensions using vector products: 

       ( ) ( )
( ' )cos E
a b
a b

θ ⋅
=

⋅
 (3)

The angle definition is adjusted as weighted distance and the Mahalanobis angle between a and 
b through the origin can be defined: 

       ( ) ( ) ( )( )
1( ' )cos

,0 , ,0M
a D b

d a d b
θ

−⋅ ⋅
=  (4)

by using the Mahalanobis distance for points a and b: 

       ( ) ( ) ( )1, Td a b a b D a b−= − ⋅ ⋅ −  (5)

where D presents dispersion. A constant Mahalanobis angle around the line joining point u 
with the origin is a hyperconical surface, with distortion D. Rescaling the scores in T in a way 
that each has equal variance is done by the Mahalanobis distance measure, distorting the 
ellipsoid described by the scatter of data observations into a sphere. Fig.1 shows three principal 
components presented in 3D where position (centre) and direction of PCs are varied according 
to different process operation regimes. The picture on the right shows a possible way to 
visually inspect unfinished batch cycle and predict its output quality, hence the decision about 
batch rejection can be made. 
 

 

Pc1

Pc2

Pc3

 
 

 
Figure 1: Different PCA models for different process operating regimes(left), and batch prediction (right); 

rejected batch (red) and accepted batch (blue). 

 

PCA enables quick but rough results, where process deviation needs to be quite large before 
reliable results can be obtained. To improve statistical model of the process thus enable better 
prognostics results, nonlinear extension of PCA model is used. NLPCA can be achieved by 
advanced soft computing algorithms (neural networks, fuzzy logic, genetic algorithm, etc) 
where auto-associative structure of neural network enables also extraction of nonlinear 
principal components that can be monitored for process deviations.  
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In 1991, Kramer (Kramer, 1991) presented a feed-forward neural network to perform identity 
mappings, where network inputs are reproduced at the output layer. Kramer’s NLPCA is a 
generalization of a classic PCA with enabled nonlinear mappings. To perform NLPCA, the 
artificial neural network in Fig. 2 consists of three hidden layers of neurons between the input 
and output layer. 

 
Figure 2: Auto-associative artificial neural network structure. 

 
Next to the input layer there is an encoding layer, followed by a bottleneck layer. Network 
layers are mirrored to the output so next layer is a decoding layer followed by the network 
outputs. Nonlinear activation function maps from higher dimension input space to lower 
dimension - bottleneck space, followed by an inverse transform mapping from bottleneck space 
back to reconstructed (original) space represented by the outputs. Network outputs produced 
values are close to the inputs’ values by minimizing the objective function. 

As described in Kramer’s paper, the mappings are achieved by next transformations: a transfer 
function f1 maps from x, the input column vector of length l, to the encoding layer, represented 
by ( )xh , a column vector of length m, 

       
( )( )( ) ( ) ( )

1

x x x

k k
h f W x b= +

 
(6)

where, ( )xb  contains the bias parameters, and ( )xW  is a weight matrix. A transfer function f2 
maps from the encoding layer to the bottleneck layer containing a reduced number of neurons, 
which represents the nonlinear principal components u,  

       
( )( )( ) ( )

2

xx xu f W h b= +
 

(7)

The transfer function f1 is generally nonlinear, while f2 can also be identity function. The 
transfer function f3 maps from u to the final hidden layer ( )uh , 

       
( )( )( ) ( ) ( )

3

u u u

k k
h f W u b= +

 
(8)

followed by f4 mapping, from 
( )uh  to x’, the output column vector of length l, with 

       
( )( )( )' ( ) ( )

4

uu u

i
i

x f W h b= +
 

(9)

The objective function 2- 'J x x=  is minimized to find weights and offset parameters of the 

AANN (optimal values of ( )xW , ( )xb , ( )xw , ( )xb , ( )uw , ( )ub , ( )uW  and ( )ub ). Mean squared error 
between the neural network output and the original data is thus minimized. The choice for the 
number of hidden neurons in an encoding/decoding layer follows a principle of parsimony, 
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however Kramer recommends using final prediction error (FPE) or Akaike’s information 
criterion (AIC). In case of a small number of mapping nodes accuracy might be low due to 
limited representational capacity of the network, and in case there are too many nodes, the 
network will be over-fitted. The algorithms and neural network design were realized in 
Matlab/Simulink by using neural network toolbox. An extraction of nonlinear components is 
achieved from bottle-neck layer, where Fig. 3 shows simple example of an extracted nonlinear 
principal component representation.  

-4
-2

0
2

4

-4

-2

0

2

4

-2

0

2

u1
u2

u3

 
Figure 3: Extracted nonlinear principal component 

3 VIRTUAL SENSOR 

Instead of just observing changes of process operation by linear or nonlinear visual techniques, 
another concept presents development of a virtual sensor, which can be used to reconstruct 
sensor data measurements upon statistical or neural network model (Hines et al., 1998). Output 
of the AANN and real-time sensor data measurements are compared to generate information 
about process deviations, trend of deviation, to predict time-to-failure of the process 
component or its functionality.  

 
Figure 4: Virtual sensor scheme with FDID and prognosis algorithm as presented in (Hines et al., 1998) 

 

In case of highly dynamic processes a dynamic or recurrent neural network structure is 
suggested to obtain reliable results. 

AANN 
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Figure 5: Reconstructed outputs are fed back to the input layer (left) and sensor degradation (right). 

4 STUDY CASE: LABORATORY HYDRAULIC THREE-TANK MODEL 

Principal component analysis, nonlinear principal component extraction and virtual AANN 
sensor were realized in Matlab/Simulink and tested on laboratory hydraulic three-tank model. 
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The process flowsheet of the three-tank laboratory model is depicted in Fig. 6. The upright 
tanks T1 and T2 are mounted above the tank T3, hence, the inlet to the tanks also depends on the 
level (hydrostatic pressure) in the tanks T1 and T2, respectively (the pumps P1 and P2 are not an 
ideal generators to the system). Also, the outlet pipes are mounted at the bottom of the tank T3, 
hence the amount of water in tank T3 affects the outlet and the inlet flow of the tanks T1 and T2. 
The nonlinear model was derived from the mass balance equations considering the Torricelli’s 
rule and can be conveniently represented as: 

       1
1 1 21 11

dhA q q q
dt

= − − ;    2
2 2 21 22

dhA q q q
dt

= + − ;    3
3 22 11 1 2

dhA q q q q
dt

= + − −  (10)

where Ai denotes cross-section of the tank, hi level in the tank and qij tank volume inflow or 
outflow, respectively. The medium in the tanks is fluid, which is taken as an ideal and 
uncompressible, therefore the specific density of the medium can be neglected (V denotes 
volume, g denotes gravity constant). For one tank a mass balance equation and the outlet of the 
tank can be described as: 

       in out
dV dhq q A
dt dt

− = = ;           ( ) 2ij V i i j i jq S sign h h g h h= ⋅ − ⋅ ⋅ ⋅ −  (11)

where SVi denotes cross-section of the outlet openness (the valve), hi and hj level in the tanks, 
respectively. 

            
Figure 6: Process flowsheet (left) and image of the laboratory model (right). 

 
To be able to test algorithms developed in Matlab several faults were introduced to the 
laboratory model while operating under closed loop conditions. Sensor faults were simulated 
as displacement of the level sensors in the tanks for approximately 2% of measured value, and 
actuator faults were simulated as partially clogged inlet pipes (closing the inlet valves). The 
obtained model depended on quality measurements and extraction of important information 
from noise correlated signals. In order to set up as much as modern real industrial environment 
an OPC interface (Matlab OPC client) and ethernet communication to PLC was used. The 
laboratory model was controlled locally by a PLC, while the process variables were fed into 
and processed in Matlab/Simulink. 
 
In the first case PCA batch (Fig. 7) prognosis was tested. Fig. 8 and Fig. 9 show acceptable 
(blue) and rejected (red) sets of batch data measurements under different regimes. Level sensor 
degradation is obvious however small sensor degradation was hard to forecast. Fig. 9 shows 
forecast upon data measurements of pump, while pipe clogging. 
 



  B. Bratina and B. Tovornik / Journal of Cybernetics and Informatics  10  (2010)          11-20           17 

 
Figure 7: Matlab/Simulink sub-system for PCs batch 

   
Figure 8: PCA batch prediction for level sensor degradation; small (left), large (right). 

   
Figure 9: PCA batch prediction for pipe clogging; small (left), large (right). 

In the second experiment a concept of nonlinear principal components observation was 
evaluated. The model was realized in Matlab/Simulink, where a dynamic AANN was trained 
by Levenberg-Marquardt back-propagation algorithm. The Fig. 10 shows first extracted 
nonlinear component behaviour when small sensor degradation was introduced to the level 
measurement. The shape and rotation of the curve is changing upon changes of system 
characteristics (nonlinearities) or due to changed working point of operation (sensor fault). 
Nonlinear principal components more accurately describe the behaviour of the process 
therefore also smaller process deviations can be detected, forecasted and therefore avoided 
however complexity and design procedure for NLPCA demands more effort.   
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Figure 10: Auto-associative neural network structure in Matlab/Simulink (left) and extracted first NLPC. 

In the third experiment a so called data reconciliation scheme was realized. By using AANN 
whole process operation or any component of the process can be modelled upon measurement 
data and observed for changes (on-line detection and trend prognosis). In the Fig. 11 a 
Simulink scheme is shown where artificial degradation of level sensor is realized. Scheme was 
tested for very small sensor performance degradation (2-4% of measured signal).  

Figure 11: Data reconciliation scheme (left) and detection of slow drift with trend prediction (right) 

 

Recently many SCADA and monitoring system developers started introducing tools and 
functionalities for basic signal processing and analysis in their commercial products. At first 
mostly basic statistics functions such as average values, deviation, median, were possible but 
modern concepts emerged as more standalone add-ons for detailed insight analysis of the 
process behaviour. A simple application of level sensor reduced performance due degradation 
was tested with GE Proficy Troubleshooter. The software among others enables development 
of classic PCA model upon imported process variables from SCADA system historian.  

 

As similar to development in Matlab, the Troubleshooter offers better GUI support and 
development procedure, which can be appropriate for plant engineers and simple realization of 
various basic analysis tasks. Upon results, necessary information is passed to the operators to 
deal with the issue. In Fig. 12 a PCA model and signal pre-processing is shown, realized by 
Troubleshooter design environment. Fig. 13 shows PCA score graphs of normal and faulty 
level sensor operation, and also slow drift detection at very small sensor displacement. 
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Figure 12: realization of PCA model in GE Proficy Troubleshoter. 

 

   
Figure 13: PCA score graph; normal operation (red) and faulty sensor (blue) scores (left), and obvious sensor drift 

detection at small sensor displacement (right). 

5.  CONCLUSION 

In the paper practical use of some multivariate statistical analysis tools is presented. The 
emphasis was given to operator’s visual support while monitoring processes, with some 
analysis and prediction functionality. Monitoring of nonlinear principal components and virtual 
sensors can improve early establishment of root causes in process deviations, therefore 
operator’s shorter reaction time enables quicker treatment of process issues and contribute to 
less process down-times. However, presented methods are merely at the doorstep of true 
prognostic algorithms emerging such as remaining useful life prediction (RUL), time to failure, 
etc.  
According to surveys in the field of prognostics, large scale systems remain an area with many 
unsolved issues in FDI where much more research is needed. Artificial intelligence and soft 
computing methods can offer great results, especially if combined into hybrid platforms. 
Design procedure comparison of basic signal processing tasks in mathematical or industrial 
software has indicated that commercial SCADA developers are catching up functionalities of 
special mathematical tools. More advanced algorithms (data fusion, neural networks, fuzzy 
logic, soft-sensors) will probably emerge in future versions of software, where plant operator 
with appropriate know-how will be able to develop advanced monitoring task of specific 
variables of the process. 

Our research will continue towards advanced algorithms for prognostics that can be easily 
implemented into commercial process industry equipment or software that enables advanced 
mathematical computations to achieve better results for product quality monitoring.  
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