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Abstract: The paper addresses the problem of output feedback guaranteed cost controller design for 
NCSs with time-delay and polytopic uncertainties. By constructing a new parameter-dependent 
Lyapunov functional and applying the free-weighting matrices technique, the parameter-dependent, 
delay-dependent design method will be obtained to synthesize a PID controllers achieving a guaranteed 
cost such that the NCSs can be stabilized for all admissible uncertainties and time-delays. Finally, 
numerical examples are given to illustrate the effectiveness of the proposed method. 

Keywords: PID controller, output feedback, Networked Control Systems (NCSs), polytopic system, 
parameter-dependent quadratic stability, time-delay system. 

1 INTRODUCTION 

Feedback control systems wherein the loops are closed through real-time networks are called 
Networked Control Systems (NCSs) (Ray and Halevi, 1988; Nilson, 1998; Walsh, Ye, 
Bushnell, 1999; Zhang, Branicky and Philips, 2001). Advantages of using NCSs in the control 
area include simplicity, cost-effectiveness, ease of system diagnosis and maintenance, 
increased system agility and testability. However, integration of communication real-time 
networks into feedback control loops inevitable leads to some problems. As a result, it leads to 
a network-induced delay in networked control closed-loop system. The existence of such kind 
of delay in a network-based control loop can induce instability or poor performance of control 
systems (Jiang and Han, 2008).  

In the recent years, the stability analysis and controller synthesis for systems with time-delay 
are important in theory and practice (Basin, Perez and Martinez-Zuniga, 2006; Boukaz and Al-
Muthairi, 2006). In the time domain, there are two approaches for controller design and 
studying of stability of closed-loop systems: Razumikhin theorem and Lyapunov-Krasovskii 
functional (LKF) approach. It is well know that the LKF approach can provide less 
conservative results than Razumikhin theorem (Friedman and Niculescu, 2008; Richard, 2003; 
Kharintonov and Melchor-Aquilar, 2000) and references therein. Existing criteria for 
asymptotic stability of time-delay systems can be classified into categories: delay-independent 
criteria and delay-dependent. And it is also know that the delay-dependent criteria make use of 
information on the length of delays, they are less conservative than the delay-independent 
ones, even if the time delays are very small. On the other hand, a wide class of uncertainty 
types studied in the system and control literature fall into the polytopic perturbations. For the 
time-delay system with polytopic-type uncertainties, the parameter-dependent stability 
condition is of less conservativeness than quadratic stability condition. Recently, free-
weighting matrices method or slack-variable method and cross term bounding method was 
developed to obtain less conservative condition (Mondie, Kharitonov, Santos, 2005; Y. He, Q. 
G. Wang, L. Xie and C. Lin, 2007) and reference therein. 
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The guaranteed cost control approach has been extended to the uncertain time-delay systems, 
for the state feedback case, see (Yu and Chu, 1999; Lee and GyuLee, 1999; Zhang, Boukas and 
Haidar, 2008) and for output feedback (Chen, Guan, and Lu, 2004). In the paper Chen, Guan 
and Lu, 2004 the authors consider the full order strictly proper dynamic output feedback 
controller. However, it seems that there is no previous result on delay-dependent guaranteed 
cost control via PID output feedback. 

Motivated by the above observation, in this article, the parameter-dependent, delay-dependent 
design method will be studied to design a robust output feedback PID controller achieving 
a guaranteed cost such that the NCSs can be stabilized for all admissible polytopic-type 
uncertainties and time-delays. Sufficient condition for existence of a guaranteed cost output 
feedback controller is established in term of matrix inequalities. 

This paper is organized as follows. Section 2 gives the problem formulation. Section 3 explains 
main results of the paper. And in section 4 numerical examples are presented to show the 
effectiveness of the proposed method. 

Notation: Throughout this paper, for real matrix M, the notation 0≥M  (respectively 0>M ) 
means that matrix M is symmetric and positive semi-definite (respectively positive definite);    
“* “denotes a block that is readily inferred by symmetry; Matrices, if not explicitly stated, are 
assumed to have compatible dimensions. 

2 PRELIMINARIES AND PROBLEM FORMULATION 

Consider the following linear time-delay system described 

    

[ ]0,,)()(
)()(

)()()()()()()(

M

d

tttx
tCxty

tuBtxAtxAtx

τϕ

ξτξξ

−∈=
=

+−+=&

         (1) 

where nRtx ∈)(  is the state vector, mRtu ∈)(  is the control input, lRty ∈)(  is the controlled 
output (measured output). The matrices SBAA d ∈)(),(),( ξξξ  belong to convex hull, and S  is 
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where idii BAA ,,  are constant matrices with appropriate dimensions and iξ  is time-invariant 
uncertainty; Mτ  is the upper bound of time delay and )(tϕ  is a continuously differentiable 
initial function. Note S  is a convex and bounded domain.  

We assume that a real-time communication network is integrated into feedback control loops 
of system (1), and the network induced delay in NCS is given by Mττ ≤<0  and 1≤≤ µτ& . 

For system (1), we consider the following PID control algorithm 

)()()()(
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τττ −+−+−= ∫ ty
dt
dKdttyKtyKtu D

t

IP     (3) 
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Applying the PID control algorithm (4) to system (5) will result in the closed-loop system  
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Given positive definite symmetric matrices Q, R and S, we will consider the cost function  
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Associated with the cost, the guaranteed cost controller is defined as follows: 

Definition 1.  

Consider the uncertain system (1). If there exist a controller of form (3) and a positive scalar 
0J  such that for all uncertainties (2), the closed-loop system (6) is asymptotically stable and 

closed-loop value of the cost function (7) satisfies 0JJ ≤  then 0J  is said to be a guaranteed 
cost and the controller (2) is said to be guaranteed cost controller. 

Finally we introduce the well known results from LQ theory. 

Lemma 1.  

Consider the continuous-time delay system (5) with control algorithm (3). The control 
algorithm (3) is the guaranteed cost control for system (5) if and only if there exists LKF 
( )tV ,ξ  such that the following condition holds: 

( ) 0)(, ≤+ tJtV
dt
d ξ                                                                       (9) 

The objective of this paper is to develop a procedure to design a robust PID controller of form 
(4) which ensure parameter-dependent the closed-loop system stability and guaranteed cost. 

 

3 MAIN RESULTS 

The following theorem provides robust parameter-dependent quadratic stability and robust 
performance results for the closed-loop system (6). 
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Theorem 1.  

Consider the uncertain linear time-delay system (1) with network-induced delay τ  satisfying 
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Then the uncertain system (1) with controller (3) is parameter-dependent quadratically- 
asymptotically stable and the cost function (7) satisfies the following bound   
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Differentiating ),( tV ξ  with respect to t  and using Newton-Leibniz 
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Applying the free-weighting matrices technique, the equation (8) is represented in the 
following equivalent form 
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Due to lema1, the closed-loop system (6) is robustly asymptotically stable and give an upper 
bound (a guaranteed cost) for the cost function (7) if    
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T tttX τϕ −∈∀=  then 
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Applying the inequality (16), to above equation the upper bound cost function (7) 0J  is 
obtained as (11). 

The theorem 1. is proved. 

4 EXAMPLES  

In this section we present the results of numerical calculations of two examples to design 
a robust output feedback PID controller with guaranteed cost for NCSs with time-delay. 
Design procedure based on BMI inequalities (10). 

Example 1 has been borrowed from Benton and Smith, 1999 to demonstrate the used for 
algorithm (10) on the problem robustly stabilizing with a guaranteed cost a vertical take-off 
and landing of a helicopter. The system is control through NCS with time-varying time-
delay 99.0],[2000 =≤=≤< µτττ &msM . Let uncertain matrices A, B, C, Ad be defined as  

0,

0
0
1
0

,

00
49.452.5

59222.7)(
1761.0422.4

,

0100
)(707.0)(1002.0

0208.40024.0010.10482.0
4555.00188.00270.0036.0

3

21

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−

= d
T AC

tq
B

tqtq
A  

with parameters bounds for all time 

  3446.4)(7446.2,420.1)(22.1,3681.1)(6319.0 321 ≤≤≤≤≤≤− tqtqtq . The above 
model has been recalculated to the form (1). The respective eight vertices are calculated. Note 
that the matrix A is unstable with max(real(eigenvalue(A)))=1.2675. The results of calculation 
for the case 10,001.0,1.0,1 0 ==== rsqr  as follows 

[ ] 0,
4086.05857.0
0927.02788.0

≅⎥
⎦

⎤
⎢
⎣

⎡−
== DIP KKKF  

The max(real(eigenvalue(Close-loop)))=-0.072209. And guaranteed cost MJJ 17,91280 =  
where 2319.0,8841.8,9794.8 312 ===== MGMGMGMGMP λλλλλ . 

Example 2  We consider the linear model of two cooperating DC motors. The problem is to 
design two PI controllers for a laboratory MIMO system which guarantee robust stability with 
a guaranteed cost. The system is control through NCS with time-varying time-
delay 2.0],[1000 =≤=≤< µτττ &msM . The system model is given with a time invariant 
matrix affine type uncertain structure, where  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−
−

=

2448.0
3676.0

00287.
00841.

0091.0
1028.0
00478.
03148.

,

8251.1000000
2279.0000000
008137.10000
001639.00000
00009107.100
00002605.000
000000014.11
0000002148.0

00 BA
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

=

00500.0
077.0
00072.
00016.

0449.0
0462.0
00798.
00625.0

,

1173.0000000
0333.0000000
000208.00000
000188.00000
00002911.0000
00000938.000
0000001395.00
000000025.0

11 BA
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

0189.0
064.0
003.
00121.0
003.0

0019.0
00151.
00094.0

,

0333.0000000
0208.0000000

0001560.00000
000188.00000
00000308.0000
00000116.0000
0000000594.00
0000000125.0

22 BA
 

0,
10100000
00001010

=⎥
⎦

⎤
⎢
⎣

⎡
= dAC  

The above model has been recalculated to the form (1). The respective four vertices are 
calculated. The results of calculation for the case 20,001.0,1.0,1 0 ==== rsqr  as follows 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−−−
−−

==
4985.18782.08916.14310.0
6964.02026.01128.08916.1

IP KKF  

The max(real(eigenvalue(Close-loop)))=-0.17726. And guaranteed cost MJJ 37,76590 =  
where 5918.15,5723.15,916.18,0011.15,916.18 312 ===== MGMGMGMGMP λλλλλ . 

5 CONCLUSION 

The guaranteed cost control problem is studied in this paper for a class of linear time-delay 
uncertain polytopic systems and a given quadratic cost function with three terms (QRS). On 
base of Lyapunov-Krasovskii functional, new sufficient parameter-dependent quadratic 
stability conditions are given for output feedback PID controller proposed design procedure in 
terms of bilinear matrix inequality. 

The examples show the effectiveness of the proposed method. 
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