
HIERARCHICAL MODELS OF TIMED CONCURRENT SYSTEMS:
COMPOSITIONAL SEMANTICS

Jaroslav Fogel

Institute of Informatics Slovak Academy of Sciences, Bratislava

Abstract
In the paper, we present the timed extension of the hierarchical state machines with the compositional
semantics ensuring that the semantics of the model can be determined from the semantics of its
components. We proposed the compositional semantics of traces with the goal of its successive
utilization in the analysis and verification of the model properties. At the end of the paper, we
discussed the computational complexity of the reachability problem, and its decomposition to sub-
problems with the lower complexity as the consequence of the compositional semantics and state
refinement.

Keywords: Hierarchical state machine, timed models, compositional semantics, verification, state
reachability.

1. INTRODUCTION

Large industrial processes require models, which inherently express their hierarchical
structure, concurrency and dynamics. Mainly, dynamics requires introducing the timing
aspects into the model that is important step in the construction of real- time control systems
for such processes. As a whole, the model of the control system (which can be done
automatically) and the user- supplied model of the controlled plant can be used for the
verification of the controller properties concerning mainly the real-time requirements. The
specification problem for these real-time applications is more complex since the absolute
timing behaviour and not only the functional behaviour of a system is important.
The paper describes a specification language based on the hierarchical state machines (HSM)
extended with timing aspects called timed HSM (THSM). We give the compositional
semantics of THSM ensuring that the semantics of THSM can be determined from the
semantics of its components. Compositionality is also useful when formally analysing the
reachability problem.
There are several works dealing with HSM as e.g., [1], [2] where authors describe finite state
machines extended with both the hierarchy and concurrency but without timing aspects. Many
works is devoted to the theory of timed automata [3], [4], from which we borrow the basic
syntax concerning the clocks (time variables). Similar work is done in [5], where the authors
present real- time extension of UML statecharts, but their semantics is substantially different.
From the statecharts syntax we borrow only graphical representation of the hierarchical states
(sequential and parallel) and terminology (OR-state, AND-state).
The paper is organized as follows. In section 2, we review timed HSM and their syntax. In
section 3, we give the operational semantics of THSM, and in section 4, the compositional
semantics of traces of THSM. Finally in section 5, we discuss the computational complexity
of the reachability problem for hierarchical time models and the task how to solve this
problem.

2. FORMAL STRUCTURE OF TIMED HSM

Among many variants of definitions of finite-state machines, the authors of [1] choose a
definition in which edges are labeled with alphabet symbols. A finite-state machine consists
of a finite set Q of states, a finite alphabet E of symbols, a set Q0 of initial states, a set QF of
final states, and set T ⊆ Q × E × Q of transitions. For modeling hierarchy and concurrency,
they proposed a machine, which states can be other machines arbitrarily nested, and which

can be composed from a set of component machines, which synchronize on transitions labeled
with common alphabet symbols. In the following definition, we extend the hierarchical state
machine (HSM) with time variables called clocks so that, we will be able to model real-time
systems.

Definition 1
A Timed HSM is a structure THSM = (X, Q, Q0, QF, E, δ, ρ, inv, T) where:
X is a finite set of time variables with values from R+ also called clocks,
Q is a finite set of discrete states,
Q0 ⊂ Q is a finite set of the initial states,
QF ⊂ Q is a finite set of the final states,
E is a finite set of event symbols (alphabet),
ρ is the hierarchy relation on Q,
δ is a default entrance function,
inv is a function associating with each discrete state q∈Q a convex X- polyhedron1 called
invariant of q,
T⊆ Q × L × Q is a finite set of transitions, where L is a set of labels l = (ζ, e, X0), where ζ is a
conjunction of atomic constraints on X defining a convex X- polyhedron, called the guard of
transition, e∈E is an event symbol, X0 ⊆ X is a set of clocks to be reset by taking the
transition.

A. States
Q is a finite set of discrete states consisting of the subset Q+ of serial or OR- states, the
subset Q× of parallel or AND- states, and the subset Qbasic of basic states. The hierarchical
structure of THSM states is represented by the binary relation ρ on Q and satisfies the
following conditions:

• There exists a unique state r, called the root state of Timed HSM, such that
for no state q∈ Q, (q ρ r).

• For every state q∈ Q, q ≠ r, there exists a unique state p∈ Q such that
(pρq). The state p is called an immediate super-state of q, whereas q is an
immediate sub-state of p.

• A state q∉Q has no immediate sub-states if and only if q is basic q∈Qbasic.
• If (p ρ q) then either p∈Q+ ∧ (q∈Q+∨ q∈ Q×∨ q∈ Qbasic) or p∈ Q× ∧

(q∈Q+∨ q∈ Qbasic).

The default entrance function δ is mapping δ: Q+→Q0 where for every p∈ Q+ and qI∈ Q0
such that (p ρ qI), qI is the default initial sub-state of the super-state p.
A state of Timed HSM is a pair (q, v), where q ∈ Q is a discrete state and v∈ inv(q) is a X-
valuation satisfying the invariant of q. X-valuation is a function v: X→R+ assigning to
each clock x∈ X(q) a non-negative real value v(x), where X(q) denotes the clocks in the
scope of the discrete state q. If discrete state q has not assigned an invariant then the time
can progress in q without bounds.
If q is OR- state with immediate sub-states q1,...,qk, then

1 X-polyhedron is the intersection of an atomic constraint on X, which are in the form x~c or x-y~c, where x,
y∈X, ~∈{ <,

�
 � , >} and c is a positive integer constant.

(1))(')(
1

�k

i

iqinvqinv
=

⊇

where n is a number of such sub-states of q, for which there exists an input transition with
label l, in which the set X0 ≠ 0 (at least one clock is reset), and

),()(' j

n

ij
i qinvqinv

i�

=

⊇

where ni is a number of sub-states between qi and qi+1 for which X0 = 0.
If there is a finite loop in the OR-state, the invariant of the states from the loop is
multiplied by the number of cycles in the loop.
For example, if the constraints of clocks of each sub-state qi are X-hyperplanes2 xi < ci,
i=1,...,k then the invariant of state q will be inv (q) ≡ x< c, where

where n in as in (1) and c′i = max i≤j≤ni cj.
If q is AND- state with immediate sub-states q1,...,qk, then

Similarly, if the constraints of clocks are as in the previous case, then for AND-state the
invariant of state q can be inv(q) ≡ x< c, where c ≥ mini(ci).

B. Transitions
Consider a state (q, v). Given a transition t=(q, guard(t), e, X0, q') such that v∈guard(t)
and v '= v [x:=0, ∀ x∈ X0]∈ inv(q'), (q, v)→e(q', v') is a discrete transition of Timed HSM
also called the e-successor of (q, v). The condition v∈ guard(t) is also called an enabling
condition of transition t. We assume that for each transition t with the source discrete state
q guard(t)� inv(q) ≠ 0 and for some outgoing transition t of discrete state q if X-valuation
v ∉ inv(q)� v ∈ guard(t).
If q or q' are the hierarchical discrete states, the transition t is also called a top-level
transition of Timed HSM. It connects the final sub-state of q with the initial sub-state of q'
given by a default entry function δ(q'). The final sub-state of an OR-state is a state without
output transition or if there is a loop within OR-state then a final sub-state is the final state
of the loop (its output transition connects it with the initial state of the loop, e.g., states c,
m, w from Fig. 1). In the case, if q is AND-state with the immediate sub-states, which can
be OR-states or basic states, the final states are stated as before, and taking the transition
means a joint exit from each of its orthogonal components. This top-level transition is
synchronization transition since all orthogonal sub-states of an AND-state must be
synchronized on their final states. This requirement is in contradiction with (2) because
independent transitions of components may interleave, and interleaving implicitly allows
indefinite waiting of a component before achieving synchronization. In spite of that, a
synchronized exit from AND-state is an important assumption to introduce the
compositional semantics of THSM, as will be shown in the next sections. The above
contradiction with (2) can be turned by introducing waiting state as a final state to all
“faster” orthogonal components (see sub-state j of a from Figure 2).
If q' is AND- state, the initial states for each sub-state qi', i=1,2,..,k of q' are given by
default entry function δ(qi), and taking the transition means a fork entrance to each of its
orthogonal components. If q and q' are both AND-states, taking the transition means a

2 X-hyperplane is a set of valuations satisfying an atomic clock constraint.

�

=

≥
n

i
icc

1

, ,

�k

1i

(2))()(
=

⊇ iqinvqinv

joint exit from each orthogonal component of q, and fork entrance to each orthogonal
component of q'. The transitions between top-level states have a lower priority compared
to the inner-level state transitions, if they are enabled simultaneously. For example, the
transition t2 between states u and m from Fig.1 has lower priority compared to any
transition of state u. This assumption gives the necessary condition for the synchronized
exit from all orthogonal components of AND-state. The state consistency, which means
that the control is always passed back to super-states, is ensured by no infinite loops
within a sub-state. In contrast with statecharts we do not allow inter-level transitions, i.e.,
the transitions crossing the borderline of states.
A time transition from (q, v) has the form (q, v)→τ(q, v+τ) where τ∈R+, and v+τ ∈ inv(q),
and it means that system is being in the state q while time elapses. If q is a hierarchical
state the time τ is bounded according to the relations (1) or (2) in accordance with its type.

Fig.1.Timed HSM
Example.
As an illustration, see Figure 1 showing a partial THSM. The root state p is product of three
OR-states r, q, and s. The state q is mapped to lower level sub-states n, u, and m. For instance,
sub-state u is AND- state too. The hierarchical structure of THMS can be represented by
directed acyclic graph (DAG) [2]. The terminal nodes correspond to the basic states; the
internal nodes may correspond to the hierarchical states. Two important parameters of DAG
are its width and depth; width of DAG is the maximum number of components in orthogonal
nodes, and depth is the length of the longest path in the DAG. The DAG of THSM from
Figure 1 is in Figure 2. An invariant of state is given either in the position of the state or
beyond the name of state in the square brackets. For example, state u has invariant X-
polyhedron given as intersection of constraints t< 8 and z< 6; state l has invariant X-
hyperplane x< 4. The timed transition must satisfy the constraint given by invariant, e.g., the
model can be maximally 4 time unit in l, so (l, 0)→4(l, 4) is legal transition but (l, 0)→5 (l, 5)
is not. The discrete transition between states is given by an oriented curve, and can be
labelled with the event, the guard condition, and by the reset function. For example, the
transition t1 from Figure 1 is taken if both the guard x> 2 is satisfied (enabling condition), and
event e6 occurs; then the clock x is set to zero. Default initial states of the hierarchical states
are marked by small arrow, e.g., states k, n, v, g, and h. For example, when the transition t0 is

taken, the model enters the default initial states g, and h of super-states a and b
simultaneously. On the contrary, when transition t2 is taken, the model must leave the final
sub-states j and d of states a, and b.

3. OPERATIONAL SEMANTICS OF TIMED HSM

Definition 2
Let s = < s1,s2,...,sn> be a tuple of basic states si = (qi, v) where qi is a basic discrete state and v

is a valuation satisfying the invariant of qi, i= 1,...,n then s will be called a configuration if
every pair of discrete states qi, qj in s is orthogonal, i.e., their lowest common ancestor3 is an
AND-state.

In Figure 1, the tuple <k, n, v> is configuration but <k, f, m, v> is not, since the pairs of basic
states f, m is not orthogonal.
The configuration of state q is full if it is maximal, i.e., it contains maximal number of basic
states that the system can be in simultaneously.
The set ℜs of full configurations for s =(q, v), q∈ Q can be computed inductively as follows:

1) If q is basic state then ℜs ={<s>}
2) If q with sub-states q1,...,qk is OR- state then ℜs ={<ℜsi>}
3) If q with sub-states q1,...,qk is AND- state then ℜs ={<ℜs1×...×ℜsk>}

Example:
The full configurations of state q from Figure 1 are for example: <k, <f, h>, v>, <l, <g, h>, w>,
but the configuration <k, n, v> is not full.

A. Synchronization
Let s= <s1,...,si,sj,...,sn> and s'= <s1...,si',sj',...,sn> be two configurations, and event
ei=ej=e∈l i∧l j, where l i, lj are labels of transitions ti, tj ; then the synchronization of discrete
transitions ti, tj with scopes χ(ti)¬ρ χ(tj)

4, where ti � (si, guard(ti), e, Xi, si '), tj � (sj,
guard(tj), e, Xj, sj') yields the transition ti || tj =(s, guard(ti) 	 guard(tj), e, Xi
 Xj, s'), where
operator || means simultaneous execution of both transitions. Also event e is called a
synchronization event.

B. Interleaving
Let s and s' be two configurations as formerly. Let ei ∈ l i ≠ ej ∈ l j, i.e., ti � (si, guard(ti), ei,
Xi, si'), tj= (sj, guard(tj), ej, Xj, sj'), then the interleaving of ti, tj yields the transitions ti ||
⊥ = (s, guard(ti), ei, Xi, s') with sj � sj' for j≠i, and ⊥ || tj = (s, guard(tj), ej, Xj, s') with si �
si' for i≠j, where ⊥ is an empty symbol.

C. Timed transition
Let s = <s1,...,si,sj,...,sn> be a configuration, then time transition si→τ si+τ, for some i∈
{1,...,n} has the result that an amount of time τ passes in the configuration s only if all
components can delay τ time units, i.e., s+τ =<s1+τ,...,si+τ...,sn+τ> and we simply write
s→τ s+τ.

3 The lowest common ancestor (lca) of states q1 and q2 is a state q such that q1, q2 are sub-states of q, and for
every sub-state p of q either p is super-state of q1 and p is not super-state of q2 or opposite.
4 The scope of transition t is denoted χ(t) and represents serial lca of source and target discrete states of
transition, and χ(ti)¬ρχ(tj) means that serial lowest common ancestors of both transitions are not in the
hierarchical relation ρ.

D. Paths and traces
Given a word σ= e0 e1 … en over the alphabet E, an accepting path of Timed HSM over σ
is a finite sequence π = s0→τ0 s0+τ0→e0 s1→τ1s1+τ1→e1s2→τ2...→ensn+1, such that s0 =
(q0,v), q0 ∈Q0 is an initial configuration, sn+1 = (qn+1, v), qn+1∈QF is a final configuration,
and for all i = 0,1,2, ...,n, si +τi is the τi- successor of si, and si+1 is ei- successor of si +τi.
A word σ is also called a trace of THSM. The set of all traces of THSM, which have an
accepting path, is called the language of THSM, denoted Σ.

 M

Fig. 2. DAG of THSM from figure 1

4. COMPOSITIONAL SEMANTICS OF TRACES

The goal is to define such compositional semantics of traces, which ensures that the semantics
of the whole system can be determined from the semantics of its components. In order to
show that our semantics is compositional, we need to be able to define the semantics of a
hierarchical state only in terms of trace semantics of its sub-states.
We show how traces can be defined with further hierarchical extension of state q.

Lemma 1 (Trace construction)
Let σ ∈Σq be a trace of state q. Let p be OR-state extension of q (pρ q); then σ'∈Σp looks like
σ' = σ1 σ2... σi σi+1...σk, where σj, j= 1, 2,...,k, j≠i are traces of new components pj of state p,
and σi =σ is an original trace of state q.
The lemma says that σ' arises from σ by the concatenation of traces of the individual sub-
states of OR- state p for every accepting path of each sub-state. In this case, top-level
transitions between sub-states connecting the entrance configuration of successor state with
the exit configuration of the predecessor state can be executed immediately (they are not
labelled with events and guards).
Now, consider the case when p is AND-state extension of q arising by adding k orthogonal
components pi to state q then the accepting path π' = s0'→τ0 s0'+ τ0→e0 s1'→τ1s1' + τ1→e1 s2'
→....→em-1 sm' , where si ' are the new configurations of state p. Now, the new trace σ' cannot
be expressed directly as the concatenation of the original trace σ of q with traces of other sub-

states. The reason is that first, the full configurations of states p and q are different and
second, some new transitions arising with the state extension can be in synchronization with
transitions of state q.

For the special case of THSM called asynchronous THSMs, we will show the compositional
semantics of traces also for AND- state extension of q. Asynchronous THSMs are
characterized by sparse interaction between parallel components. That is, there is no
synchronization of orthogonal components by means of shared events; all interactions are
assumed to be modelled either by high-level transitions or by the transition constraints. We
will use the following lemmas.

Lemma 2
With AND- state extension of state q its configuration is extended with a tuple of basic states
of the new orthogonal components.
Proof
It is evident from the construction of full configuration.

Lemma 3
Let p be AND-state extension of state q (pρ q). If Ep-q∩Eq= 0 (the set of common events of
added orthogonal state components and state q is empty) then σ' is concatenation of σ with
the trace formed by interleaving of transitions ti, tj with scopes χ(ti)=p-q and χ(tj)= q with the
difference that now the traces σ' and σ are constructed from the accepting path containing the
extended state configurations according to Lemma 2.
Proof
We mark the configuration of p as sp=<<s1>,<s2>,...,<sq>>, where <s1>,<s2>,... are
configurations of new orthogonal components of state p, and <sq> is the configuration of state
q. We want to show that the accepting path π' = sp0→τp0sp0 + τp0→ep0sp1→τp1sp1 + τp1

→ep1→sp2→τp2....→epm-1spm of state p contains the original accepting path of state q, π =
sq0→τq0 sq0+τq0→eq0 sq1→τq1sq1+τq1→eq1sq2→τq2...→eqn-1sqn, where m ≥ n.

• The time transition of π sqi →τqi sqi + τqi is contained in spj →epj spj+1 →τpj+1 spj+1
+τpj+1 because sqi ⊂ spj ∧ sqi ⊂ spj+1 and sqi +τqi ⊂ spj+1 + τpj+1, where event epj ∉ Ep.

• The discrete transition of π sqi+1 →eqi sqi+2 is contained in spj+1 →τpj+1 spj+1 +τpj+1
→epj+1 spj+2 because sqi+1 ⊂ spj+1 ∧ sqi+1⊂ spj+1 +τpj+1 and sqi+2 ⊂ spj+2 , where epj+1 = eqi.

According to the assumption Ep-q∩Eq= 0 all discrete state transitions of state p are
interleaving, it means that all events e ∈ E causing the discrete transitions in the path π', do
not influence the components <s> of configurations from π' which are changing in accordance
with the configurations from π. That means now, the trace σ' will contain the original trace σ.
In the case when Ep-q∩Eq≠ 0 (the synchronization of orthogonal components by means of
shared events), the enabling conditions of transition from the original path π will be different
(the conjunction of guards of transitions with shared event, see the synchronization case
above) than in the case without state extension. That means now, the trace σ’ will not contain
the original trace σ.

The above lemma is used to prove the following theorem:

Theorem 1
The set of traces Σ of THSM can be computed from the set of traces of its sub-states and its
discrete and timed transitions.
Proof.
It follows immediately from the preceding lemmas.

4.1 Refinement

The trace semantics allows us to define refinement between THSM. The refinement relation
between models captures the notion that two THSMs describe the same system at different
levels of detail.

 N1 M1 N

Fig. 3. DAGs showing the refinement of the hierarchical states
Definition 3
Let M1= (X, Q1, Q0

1, QF
1, E, δ, ρ, inv1, T1) and M2= (X, Q2, Q0

2, QF
2, E, δ, ρ, inv2, T2) be

two THSM such that Q1⊆Q2 , Q0
1⊆ Q0

2, QF
1⊆ QF

2, T1⊆T2, and for all q∈ Q1∩Q2, inv1(q)=
inv2(q) then M2 refines M1, denoted M2� M1, if Σ2⊆Σ1.

The sub-machine M′ = (X, Q′, Q0

′, QF
′, E, δ, ρ, inv′, T′) of THSM M = (X, Q, Q0, QF, E, δ,

ρ, inv, T) can be defined by the following condition: ∃ q p, q∈Q∧q∉Q� Q′ ∧ p∈Q� Q′ such
that q is a immediate super-state of p (qρ p). We mark by CM[M′] the context of M′ in M.

We show that refinement operator is compositional with respect to the hierarchy relation of
THSM.
Theorem 2
Given a THSM M with sub-machine M1, such that
(a1) M1 � N1 , where N1 is a sub-machine of N and
(a2) the CM[M1] = CN[N1] then
M� N.
Proof.
It follows from:
M � CM[M1] � CM[N1] � CN[N1] � N, where the second refinement relation results from
theorem assumption (a1) and the third relation results from the theorem assumption (a2).

Example:
As an illustration of the theorem we introduce an example of DAG from Figure 2. DAG of
N1 with state u that is not refined, is given in Figure 3(a). DAG of M1, now with state u
refined to its sub-states is given in Figure 3(b). N is given in Figure 3(c). You can see that
DAG of M from Figure 2 refines N that is the consequence of the refinement of N1 with M1.

5. REACHABILITY

The reachability problem belongs to the problems, which are widely discussed in many works
concerning the formal methods in the model verification. The safety properties of the model
can be also transformed to the reachability problem, which can be then formulated as: Is a
state, in which the safety properties are not satisfied, reachable or not. The reachability
problem can be formally defined as:
Given an initial configuration s0 and the set P of final configurations of THSM. Our objective
is to verify whether there exists a configuration p∈ P and a path π= s0→s1→,...,→p such that
p is π-reachable from s0.
Authors of [1] discussed the reachability problem of communicating HSM (CHSM) from the
point of view of its complexity. In CHSM, the concurrency and hierarchy operator are
arbitrary nested, and the product components can synchronize with each other at different
levels of hierarchy. These features make the reachability problem significantly difficult to

solve. Authors show that reachability problem for a CHSM can be solved in time O(nmd)
where n is number of states, m is a width and d is a depth of DAG. The complexity is
EXPSPACE- complete. The authors define well-structured CHSM the complexity of which is
lower. The restriction to well-structured machines ensures that if two or more hierarchical
machines are composed together, then they can synchronize only at the top level. The
reachability problem in this case is PSPACE-complete and can be solved in time O(k.nm)
where k is number of hierarchical machines, and n maximal number of states of the
hierarchical machine.
Time extension of the HSM is not elaborated to this time, but there is a very nice developed
theory of timed automata in the literature. Timed automaton is specification formalism
without the state hierarchy and parallelism. Its state structure is very similar to our OR-state
with the sub-states, which are basic. By introducing time into the model with the hierarchical
states, makes the verification problem more difficult. The reason is that, now, the state space
is not only hierarchically structured but it becomes also infinite. There are several techniques
solving the approximation of infinite state space by its finite representation. For timed
automata the known finite partition of the state space are symbolic states for example regions
or zones. The symbolic state is an abstract state containing a discrete state together with a
time region or zone where all time-abstracting bisimulation equivalent valuations of clocks
belong to. The precise definition is in [6]. In [4], the computational complexity of the parallel
composition of k timed automata is given. The reachability problem is PSPACE- complete
and can be solved in time nk+1.2O(k.l.log(kcr)), where l is number of clocks, and every constant in
clock constraints is bounded by c.
Our compositional semantics of THSM allows us to decompose the complex model to the
sub-models, which have lower state space in accordance with the refinement operator, which
is compositional with respect to the hierarchy relation (including the operator of the state
parallel composition). The complex reachability problem can be such divided into sub-
problems the computational complexity of which is lower.
For example, the reachability problem of the example from Figure 1 is to show that the final
configuration <c, m, w> can be reached from the initial configuration <k, n, v>. The problem
can be divided into sub-problems: to show the reachability of the final configuration for each
parallel component of state p individually. Of coarse, due to timing constraints (invariants in
states and guards in transitions) the final configurations for each parallel component need not
be reached at the same time. This problem can be solved by some technique known from the
theory of timed automata [6], e.g., by finite approximation of the infinite configuration space
with zones.

6. CONCLUSION

We show how the compositional semantics of timed HSM can be exploited in the reachability
analysis without translation of the model to its flattened version. In the future our work, we
plan to concentrate on the wide class of verification tasks concerning mainly the verification
of the temporal logic formulas expressing the real-time model behaviours.

The author is grateful to the Slovak Grant Agency for Science VEGA (grant No, 2/1101/22)
for partial supporting of this work.

REFERENCES

[1] Alur R., S. Kannan, and M. Yannakis: Communicating Hierarchical State Machines.
Proceedings of the 26th International Colloquium on Automata, Languages, and
Programming, LNCS 1644, Springer- Verlag, 1999, 169--178.
[2] Brave Y. and M. Heymann: Control of Discrete Event Systems Modeled as Hierarchical
State Machines. IEEE Transaction on Automatic Control, Vol. 38, No. 12, 1993, 1803-1819.
[3] Alur R., D. Dill: A theory of timed automata. Theoretical Computer Science. 126, 1994,
183- 235.
[4] Alur R., Timed Automata. 11th Conference on Computer- Aided Verification, LNCS 1633,
Springer-Verlag, 1999, 8-22.
[5] David A., M. O. Moller, and Wang Yi: Formal Verification of UML Statecharts with
Real-Time Extensions. Proceedings of FASE 2002, LNCS 2306, 2002, 218-232.
[6] Tripakis S., S. Yovine: Analysis of Timed Systems using Time- Abstracting
Bisimulations. Formal Methods in System Design, 18, Kluver Academic Publishers, 2001,
25- 68.

