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Abstract

In the paper, we present the timed extension ohityx@rchical state machines with the compositional
semantics ensuring that the semantics of the moael be determined from the semantics of its
components. We proposed the compositional semanficsaces with the goal of its successive
utilization in the analysis and verification of tmeodel properties. At the end of the paper, we
discussed the computational complexity of the radbitity problem, and its decomposition to sub-
problems with the lower complexity as the consegeeof the compositional semantics and state
refinement.

Keywords. Hierarchical state machine, timed models, compmsti semantics, verification, state
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1. INTRODUCTION

Large industrial processes require models, whicheriently express their hierarchical
structure, concurrency and dynamics. Mainly, dymamiequires introducing the timing
aspects into the model that is important step éndbnstruction of real- time control systems
for such processes. As a whole, the model of tharab system (which can be done
automatically) and the user- supplied model of ¢batrolled plant can be used for the
verification of the controller properties concegimainly the real-time requirements. The
specification problem for these real-time applmasi is more complex since the absolute
timing behaviour and not only the functional bebaviof a system is important.

The paper describes a specification language basdlde hierarchical state machines (HSM)
extended with timing aspects called timed HSM (THSMVe give the compositional
semantics of THSM ensuring that the semantics oSEMHcan be determined from the
semantics of its components. Compositionality soalseful when formally analysing the
reachability problem.

There are several works dealing with HSM as elg,,[R] where authors describe finite state
machines extended with both the hierarchy and aoeway but without timing aspects. Many
works is devoted to the theory of timed automaia [, from which we borrow the basic
syntax concerning the clocks (time variables). Bimiork is done in [5], where the authors
present real- time extension of UML statechartg,their semantics is substantially different.
From the statecharts syntax we borrow only graphe@esentation of the hierarchical states
(sequential and parallel) and terminology (OR-stAtdD-state).

The paper is organized as follows. In section 2,rex¢ew timed HSM and their syntax. In
section 3, we give the operational semantics of MIH8nd in section 4, the compositional
semantics of traces of THSM. Finally in sectiona®, discuss the computational complexity
of the reachability problem for hierarchical timeodels and the task how to solve this
problem.

2. FORMAL STRUCTURE OF TIMED HSM

Among many variants of definitions of finite-stateachines, the authors of [1] choose a
definition in which edges are labeled with alphagghbols. A finite-state machine consists
of a finite setQ of states, a finite alphabBtof symbols, a sef), of initial states, a s&)r of
final states, and s@t 0 Q x E x Q of transitions. For modeling hierarchy and conency,
they proposed a machine, which states can be athehines arbitrarily nested, and which



can be composed from a set of component machiréshsynchronize on transitions labeled
with common alphabet symbols. In the following deibn, we extend the hierarchical state
machine (HSM) with time variables called clockstkat, we will be able to model real-time
systems.

Definition 1

A Timed HSM is a structure THSM =X, Q, Q, @, E,J, p, inv, T) where:

X is a finite set of time variables with values fr&thalso called clocks,

Q is a finite set of discrete states,

Qo O Qs a finite set of the initial states,

QO Qs a finite set of the final states,

E is a finite set of event symbols (alphabet),

pis the hierarchy relation d@,

Jis a default entrance function,

inv is a function associating with each discrete stef® a convexX- polyhedron called
invariant ofq,

TJQ xL xQis a finite set of transitions, whekes a set of labels= (¢, e, %), wherelis a
conjunction of atomic constraints ofidefining a convexX- polyhedron, called the guard of
transition, e E is an event symbol{, /7 X is a set of clocks to be reset by taking the
transition.

A. States
Q is a finite set of discrete states consistinghef sl;ubseQ+ of serial or OR- states, the
subsetQ” of parallel or AND- states, and the sub®t° of basic states. The hierarchical
structure of THSM states is represented by therpirglation p on Q and satisfies the
following conditions:
* There exists a unique statecalled the root state of Timed HSM, such that
for no stateg/7Q, (qpor).
* For every stat@] Q, g # r, there exists a unique stgiél Q such that
(peq). The state is called an immediate super-stateqpfvhereagy is an
immediate sub-state pf
« A stateqJQ has no immediate sub-states if and ontyi§ basicqQ*
« If (p p Q) then eithepdQ" O (qUQ'U qO QT g0 Q**Y or pO Q* O
(qUQ Dl Q™).

The default entrance functiakis mappingd Q" — Qo where for everpd Q" andqg'D Qo
such thati§ o d), q' is the default initial sub-state of the superespat

A state of Timed HSM is a paig(V), whereq /7Q is a discrete state and inv(q) is aX-
valuation satisfying the invariant @f. X-valuation is a functiorv: X—.R" assigning to
each clockx] X(q) a non-negative real valugx), whereX(q) denotes the clocks in the
scope of the discrete stajelf discrete statg has not assigned an invariant then the time
can progress ig without bounds.

If g is OR- state with immediate sub-stades..,t, then

inv(q) O Dinv‘(qi) (1)

! X-polyhedron is the intersection of an atomic caistronX, which are in the formi~c or x-y~g wherex,
yX, ~0{<,= =, >} and cis a positive integer constant.



wheren is a number of such sub-stategjpfor which there exists an input transition with
labell, in which the seKy # O (at least one clock is reset), and

inv'(q) O Oinv(qj),

wheren; is a number of sub-states betweeandg;.; for whichX, = 0.

If there is a finite loop in the OR-state, the inaat of the states from the loop is
multiplied by the number of cycles in the loop.

For example, if the constraints of clocks of each-stateq; areX-hyperplanesx; < ¢,
i=1,...,kthen the invariant of statpwill be inv (g) = x< ¢, where

c= Zn:c;,
i=1

wheren in as in (1) ana | = MaXigj<n G.
If g is AND- state with immediate sub-statgs..,q, then

inv(q) O Oinv(qi) (2)

i=1

Similarly, if the constraints of clocks are as lie fprevious case, then for AND-state the
invariant of state can banv(q) = x< ¢, wherec = min(c;).

B. Transitions

Consider a stateg( V). Given a transitiori=(q, guard(t), e, X%, q°) such thawvJguard(t)
andv '=v [x=0, O x0 Xo]O inv\(q), @, V) -q’, v) is a discrete transition of Timed HSM
also called the-successor ofq, V). The conditionvd guardt) is also called an enabling
condition of transitiort. We assume that for each transitiomith the source discrete state
g guardt)N inv(q) # 0 and for some outgoing transitibof discrete statq if X-valuation

v O inv(q)= v O guard(t).

If g or ' are the hierarchical discrete states, the transttic also called a top-level
transition of Timed HSM. It connects the final sstiate ofg with the initial sub-state af'
given by a default entry functio®q'). The final sub-state of an OR-state is a stateowith
output transition or if there is a loop within ORM® then a final sub-state is the final state
of the loop (its output transition connects it wikte initial state of the loop, e.g., states
m, wfrom Fig. 1). In the case, df is AND-state with the immediate sub-states, wisiah

be OR-states or basic states, the final statestated as before, and taking the transition
means a joint exit from each of its orthogonal comgnts. This top-level transition is
synchronization transition since all orthogonal -stdites of an AND-state must be
synchronized on their final states. This requiretrigrin contradiction with (2) because
independent transitions of components may intedeand interleaving implicitly allows
indefinite waiting of a component before achieveygnchronization. In spite of that, a
synchronized exit from AND-state is an importantsuamsption to introduce the
compositional semantics of THSM, as will be shownthe next sections. The above
contradiction with (2) can be turned by introducingiting state as a final state to all
“faster” orthogonal components (see sub-stategj fodbm Figure 2).

If q' is AND- state, the initial states for each suliestg, i=1,2,..,k of g' are given by
default entry functiondq;), and taking the transition means a fork entranceach of its
orthogonal components. & andg' are both AND-states, taking the transition means a

2 X-hyperplane is a set of valuations satisfying amét clock constraint.



joint exit from each orthogonal component gfand fork entrance to each orthogonal
component ofy'. The transitions between top-level states hawenai priority compared
to the inner-level state transitions, if they aratded simultaneously. For example, the
transitiont2 between states and m from Fig.1 has lower priority compared to any
transition of statelr. This assumption gives the necessary conditiortHersynchronized
exit from all orthogonal components of AND-statdeTstate consistency, which means
that the control is always passed back to supéesstés ensured by no infinite loops
within a sub-state. In contrast with statechartsd@enot allow inter-level transitions, i.e.,
the transitions crossing the borderline of states.

A time transition from, \) has the formd, V) - ’(q, v+1) whererJR", andv+ 7 0 inv(q),
and it means that system is being in the sgatéhile time elapses. i is a hierarchical
state the time is bounded according to the relations (1) or (23dcordance with its type.
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Fig.1.Timed HSM
Example.
As an illustration, see Figure 1 showing a pafidSM. The root state is product of three
OR-states, g, ands. The state) is mapped to lower level sub-statesy, andm. For instance,
sub-stateu is AND- state too. The hierarchical structure diMS can be represented by
directed acyclic graph (DAG) [2]. The terminal nsdeorrespond to the basic states; the
internal nodes may correspond to the hierarchieaés. Two important parameters of DAG
are its width and depth; width of DAG is the maxmmaumber of components in orthogonal
nodes, and depth is the length of the longest pathe DAG. The DAG of THSM from
Figure 1 is in Figure 2. An invariant of stategisen either in the position of the state or
beyond the name of state in the square brackets.ekample, statar has invariantx-
polyhedron given as intersection of constraitits8 and z< 6; statel has invariantX-
hyperplanex< 4. The timed transition must satisfy the constrgiwen by invariant, e.g., the
model can be maximally 4 time unitlinso {, 0)-“(l, 4) is legal transition but,(0)-" (I, 5)
is not. The discrete transition between stategivien by an oriented curve, and can be
labelled with the event, the guard condition, andthe reset function. For example, the
transitiontl from Figure 1 is taken if both the guagel 2 is satisfied (enabling condition), and
evente6 occurs; then the clockis set to zero. Default initial states of the &iehical states
are marked by small arrow, e.g., stdten, v, g andh. For example, when the transititihis



taken, the model enters the default initial staggsand h of super-statesa and b
simultaneously. On the contrary, when transitidns taken, the model must leave the final
sub-stategandd of statesa, andb.

3. OPERATIONAL SEMANTICSOF TIMED HSM

Definition 2

Lets=<s,%,...5> be a tuple of basic statgs= (q;, V) whereq; is a basic discrete state and
is a valuation satisfying the invariant gf i= 1,...,nthen s will be called a configuration if
every pair of discrete stateg g in s is orthogonal, i.e., their lowest common ancés®an
AND-state.

In Figure 1, the tuplek, n, v is configuration bugk, f, m, ¥ is not, since the pairs of basic
statesf, mis not orthogonal.
The configuration of stateq is full if it is maximal, i.e., it contains maxirhaumber of basic
states that the system can be in simultaneously.
The set/7; of full configurations fois =(q, V), g0 Q can be computed inductively as follows:
1) If gis basic state thefis ={<s>}
2) If g with sub-states,...,ok is OR- state thefis ={</7>}
3) If g with sub-states;,...,0 is AND- state ther/s ={</7s;x...X g}

Example:
The full configurations of statg from Figure 1 are for examplek, <f, h>, v>, <I, <g, b>, w>,
but the configuratiork, n, » is not full.

A. Synchronization

Let == <s,...,$,§,....%> and s= <s....,§'§',....,.> be two configurations, and event
e=g=elJl;;, wherel;, |; are labels of transitiorts t ; then the synchronization of discrete
transitionst;, t with scopesy(t)- o )((t,-)“, whereti=(s, guardt), e, X, s'), t= (S,
guardy;), e, X, §') yields the transitioty ||t =(s, guardt)Nguard;), e, XUX;, S), where
operator || means simultaneous execution of baihsitions. Also evene is called a
synchronization event.

B. Interleaving

Let sands' be two configurations as formerly. Letd |; £ g 01}, i.e.,ti=(s, guardt;), &,
X, s"), t= (s, guardt), g, X;, §'), then the interleaving df t yields the transitions ||
0= (s guardt), e, X, s) withs = §' for jzi, andO ||t; = (s, guardt), g, X, s) withs =
s' for i#j, wherell is an empty symbol.

C. Timed transition

Lets=<s,...,5,5,....%> be a configuration, then time transitign.” s+ 7, for some i0J
{1,...,1 has the result that an amount of timgasses in the configurati@only if all
components can delaytime units, i.e.st7 =<s+7,...,5+ ...,5+ > and we simply write
S s+r.

3 The lowest common ancestor (Ica) of stakeanda, is a state such thaty, g, are sub-states of and for
every sub-statp of g eitherp is super-state a@f, andp is not super-state o or opposite.

* The scope of transition t is denotgd) and represents serial Ica of source and targetetiésstates of
transition, angy(t;) - ox(t;) means that serial lowest common ancestors oftbartisitions are not in the
hierarchical relatior.



D. Paths and traces

Given a wordo= & e, ... @ over the alphabéi, an accepting path of Timed HSM ower
is a finite sequenc&r= 55— S+ - 5 -5+ 11 %%, - ... ~®"5,41, such thatsy =
(9o,V), o 0Qo is an initial configurations,+1 = (gn+1, V), Gn+10QF is a final configuration,
and for alli=0,1,2, ...,ns +7 is ther- successor of, ands.; is - successor of + 7.

A word o'is also called a trace of THSM. The set of @tés of THSM, which have an
accepting path, is called the language of THSMptksh 5.

M

P(AND)

Fig. 2. DAG of THSM from figure 1

4. COMPOSITIONAL SEMANTICS OF TRACES

The goal is to define such compositional semamtidsaces, which ensures that the semantics
of the whole system can be determined from the sBosaof its components. In order to
show that our semantics is compositional, we neeliet able to define the semantics of a
hierarchical state only in terms of trace semantfdts sub-states.

We show how traces can be defined with furtheran@rical extension of statgp

Lemma 1 (Trace congruction)

Let o024 be a trace of state Letp be OR-state extension of(po q); thend'l5, looks like

0 =01 0... G G4...0, Whereg;, j= 1, 2,...k, @ are traces of new componeptsf statep,
and g =cis an original trace of statg

The lemma says that' arises fromo by the concatenation of traces of the individuab-s
states of OR- statp for every accepting path of each sub-state. Ia tase, top-level
transitions between sub-states connecting the rerraonfiguration of successor state with
the exit configuration of the predecessor state lwarexecuted immediately (they are not
labelled with events and guards).

Now, consider the case whenis AND-state extension af arising by addindg orthogonal
componenty; to stateq then the accepting patti = ' - ° '+ -8 -"s'+ s
..o ®™gr wheres' are the new configurations of stateNow, the new trace' cannot
be expressed directly as the concatenation ofri@al traceo of g with traces of other sub-



states. The reason is that first, the full configions of statep and q are different and
second, some new transitions arising with the statension can be in synchronization with
transitions of statq.

For the special case of THSM called asynchronouSMs| we will show the compositional
semantics of traces also for AND- state extensiénqo Asynchronous THSMs are
characterized by sparse interaction between phretieiponents. That is, there is no
synchronization of orthogonal components by mednshared events; all interactions are
assumed to be modelled either by high-level triamsitor by the transition constraints. We
will use the following lemmas.

Lemma 2

With AND- state extension of statgits configuration is extended with a tuple of loastiates
of the new orthogonal components.

Pr oof

It is evident from the construction of full configtion.

Lemma 3
Let p be AND-state extension of stagg(po ). If E,.qnEq= 0 (the set of common events of
added orthogonal state components and staseempty) therng' is concatenation ofr with
the trace formed by interleaving of transitidng; with scopesy(t)=p-q and x(t;)= q with the
difference that now the traces and o are constructed from the accepting path contaithiag
extended state configurations according to Lemma 2.
Proof
We mark the configuration op as §=<<s;>,<s>,...<§>>, Wwhere <s;>,<s>,... are
configurations of new orthogonal components ofegtataind<s,> is the configuration of state
g. We want to show that the accepting path= S0-""%0 + o—"%1—""S1 + Tp1
Ll MAL L™ of statep contains the original accepting path of staterr =
S0 — 0 Sot qu—»eqo S1— quSql‘f' qu—»quSqZ — qu... #eqn—lsqn, wherem = n.
« The time transition of7 g; - ™ §; + 7y is contained irs,; - sy — ™7 Sy
+Ipj+1 becausey 0 sy O O Spje1 @andsyi + g 0 Sy + Tpjea, Where eveng,; O E,.
« The discrete transition off Sjs1 —°" syiv2 is contained iNgyr — ™™ 1+
epj+l o . . . : . . . A
- P g2 becauseyiv 0 S O S0 Spje1 +Tpje1 @ndsgisz 0 Syjvz , Whereepi = &
According to the assumptiok,qnEq= O all discrete state transitions of stgteare
interleaving, it means that all ever@s1 E causing the discrete transitions in the pathdo
not influence the componerts> of configurations fronv? which are changing in accordance
with the configurations fromz That means now, the tracé will contain the original trace.
In the case whekpqnEqZ O ( the synchronization of orthogonal componentsrieans of
shared events), the enabling conditions of tramsitiom the original pathzwill be different
(the conjunction of guards of transitions with sthrevent, see the synchronization case
above) than in the case without state extensioat firteans now, the traezg will not contain
the original trace.

The above lemma is used to prove the following ité&en

Theorem 1

The set of traceg of THSM can be computed from the set of tracesso$uib-states and its
discrete and timed transitions.

Proof.

It follows immediately from the preceding lemmas.



4.1 Refinement

The trace semantics allows us to define refinerbetiveen THSM. The refinement relation
between models captures the notion that two THSbkcribe the same system at different
levels of detalil.

N1 M1 N
D(AND)
S(OR)
/&)R] MOR) J(OR) M
n u m k | C n u m V w
() ()
()
Fig. 3. DAGs showing the refinement of the hierarahstates
Definition 3

Let M= (X, @, Q, Q% E, J o, invi, To) andM2= (X, @, Q4 Q2 E, J, p, inw, To) be
two THSM such tha©,0Q, , Qo' Q¢%, Q' Q% T1OT,, and for allgd Q:nQ,, invi(g)=
inv,(q) thenM, refinesM;, denotedVi,< My, if 2,002;.

The sub-machin®’= (X, Q, Q, Q¢, E, J, p, inv’, T’) of THSMM = (X, Q, Q, Q, E, J,
p, inv, T) can be defined by the following conditiang p,qdQqLQNQ "0 plQNQ’such
thatq is a immediate super-statep{qe p). We mark byCy[M] the context oM’ in M.

We show that refinement operator is compositioniéth wespect to the hierarchy relation of
THSM.

Theorem 2

Given a THSMM with sub-machind;, such that

(al)M; < N; , whereN; is a sub-machine dfl and

(a2) theCu[M1] = C\[N4] then

M= N.

Proof.

It follows from:

M < Cu[M1] < Cu[N1] =< C\[Ni] =< N, where the second refinement relation results from
theorem assumption (al) and the third relationlt®fuom the theorem assumption (a2).

Example:

As an illustration of the theorem we introduce aameple of DAG from Figure 2. DAG of
N; with stateu that is not refined, is given in Figure 3(a). DA® M;, now with stateu
refined to its sub-states is given in Figure 3(¥)is given in Figure 3(c). You can see that
DAG of M from Figure 2 refinesl that is the consequence of the refinement;ofvith M;.



5. REACHABILITY

The reachability problem belongs to the problentsicvare widely discussed in many works
concerning the formal methods in the model vetiiica The safety properties of the model
can be also transformed to the reachability probletrich can be then formulated as: Is a
state, in which the safety properties are not fedis reachable or not. The reachability
problem can be formally defined as:

Given an initial configuratios, and the seP of final configurations of THSM. Our objective
is to verify whether there exists a configuratmf P and a pathrr=s- S, —,...,—» p such that

p is 7ereachable frons.

Authors of [1] discussed the reachability probleht@mmunicating HSM (CHSM) from the
point of view of its complexity. In CHSM, the comcency and hierarchy operator are
arbitrary nested, and the product components cachsynize with each other at different
levels of hierarchy. These features make the réuliigproblem significantly difficult to

solve. Authors show that reachability problem fo€CHSM can be solved in tim@(nmd)
wheren is number of statesn is a width andd is a depth of DAG. The complexity is
EXPSPACE- complete. The authors define well-stmetuUCHSM the complexity of which is
lower. The restriction to well-structured machiressures that if two or more hierarchical
machines are composed together, then they can reynioh only at the top level. The
reachability problem in this case is PSPACE-coneplend can be solved in tin@(k.d")
where k is number of hierarchical machines, andmaximal number of states of the
hierarchical machine.

Time extension of the HSM is not elaborated to timee, but there is a very nice developed
theory of timed automata in the literature. Timeatoanaton is specification formalism
without the state hierarchy and parallelism. Itgeststructure is very similar to our OR-state
with the sub-states, which are basic. By introdgi¢cime into the model with the hierarchical
states, makes the verification problem more diffictihe reason is that, now, the state space
is not only hierarchically structured but it becamadso infinite. There are several techniques
solving the approximation of infinite state space its finite representation. For timed
automata the known finite partition of the statacgare symbolic states for example regions
or zones. The symbolic state is an abstract s@téaining a discrete state together with a
time region or zone where all time-abstractingrbigation equivalent valuations of clocks
belong to. The precise definition is in [6]. In [4he computational complexity of the parallel
composition ofk timed automata is given. The reachability problenPSEPACE- complete
and can be solved in tinpg*?. 20k oaken) \wherel is number of clocks, and every constant in
clock constraints is bounded by

Our compositional semantics of THSM allows us teaepose the complex model to the
sub-models, which have lower state space in acocedwith the refinement operator, which
is compositional with respect to the hierarchy tiefa (including the operator of the state
parallel composition). The complex reachability wem can be such divided into sub-
problems the computational complexity of whichow/ér.

For example, the reachability problem of the exanfpdm Figure 1 is to show that the final
configuration<c, m, w> can be reached from the initial configuratidq n, v>. The problem
can be divided into sub-problems: to show the rabitity of the final configuration for each
parallel component of state p individually. Of cegrdue to timing constraints (invariants in
states and guards in transitions) the final coméijans for each parallel component need not
be reached at the same time. This problem canl@edsby some technique known from the
theory of timed automata [6], e.g., by finite appneation of the infinite configuration space
with zones.



6. CONCLUSION

We show how the compositional semantics of timedH&n be exploited in the reachability
analysis without translation of the model to i@tténed version. In the future our work, we
plan to concentrate on the wide class of verifiratiasks concerning mainly the verification
of the temporal logic formulas expressing the teaé model behaviours.

The author is grateful to the Slovak Grant AgerayS3cience VEGA (grant No, 2/1101/22)
for partial supporting of this work.
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