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Abstract  

In this paper the theory of the hypotheses evaluation about the instantaneous state of the safety-related 
critical processes has been described. Firstly, the critical processes (CP) are characterised. Fuzzy state 
images of the monitored process are defined by the composition of process variables. The hypotheses 
about the possible states of the safety-related critical process are set and the finite sets of the system 
states in discrete state space are defined. Secondly, the hypotheses are evaluated using fuzzy logic 
from their credibility point of view. The set of the weighted statements about the instantaneous state of 
the monitored process is a result. 
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1 INTRODUCTION 

Safety-related critical process is a continuous or discrete technological process whose 
dysfunction effected by its own error or control error could cause damage to properties, 
health, human lives and environment [Molnárová, 1999]. System’s tools for analysis and 
synthesis of control systems used in safety-related critical applications are similar to 
conventional. They are also appended with tools for identification of the failure states and 
with tools for affect analysis of the particular failure group, which is dominant from the safety 
point of view. Control precision and its safety rate depend on information quality about the 
actual state of the safety-related CP. 

2 CONTROLLING AND CONTROLLED PROCESS AS A SAFETY-RELATED 
CRITICAL PROCESS 

Assume that the control system (Fig. 1) is defined by 0U,,,U,P,Y βω , where Y is a set of 
inputs, which monitors the instantaneous state of controlled process. 
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Fig. 1 Interaction between controlled process and operational environment 



 

Finite set P includes all requirements of superior control system (operator) to transfer 
controlled process into new target state from set S. U is a finite set of states, 

UUP →×∆×:ω  is a transition function, XU: →β  is an output function and UU0 ∈  is 
an initial state of the control system. 

Controlled process can be described as a subsystem with a finite set of discrete states (Fig. 1). 
Input variables are commands of the control system {X}, output variables are process 
variables {Y}. The instantaneous state of the controlled process is determined by state 
variables {S}. Behavioural analysis of the controlled process redounds to description of state 
trajectory. 

The controlled process as a subsystem is affected by operating environment (OE) with its 
defined set of stressors εOE. The mechanism of the controlled process safety level reducing, its 
dysfunction or breakdown could be summarised into following groups: 

 consequence of the controlled process correct response to an incorrect command of the 
control subsystem, 

 consequence of the faulty or unpredictable response of the controlled process to a correct 
command, 

 consequence of the failure intervention of the operational environment to a correctly 
working controlled process, 

 consequence of the failure intervention of the operational environment to an incorrectly 
working controlled process (failure cumulation).  

The methods for the analysis of dynamic systems can be used for behavioural analysis of the 
controlled process following its external exhibition, i.e. in accordance with measurable 
parameters, which are changing in time. The subsystem of the controlled process is described 
with parameters 0,,,,, SSYX αδ , where X, Y and S are sets of inputs, outputs and states of 
the controlled process, respectively. SSX: →×δ  is a transfer function (determining 
system’s dynamic), YS: →α  is an output function and SS0 ∈  is an initial state. Thus, 
( ) ( ) ( )( )tS,tU1tS δ=+ , ( ) ( )( )tStY α= . The operational environment effects the controlled 

process behaviour with a set of stressors εOE. In this case, subsystem of the controlled process 
can be rewritten with variables 0,,,,,, SSYX OE αδε , which create non-deterministic or 
stochastic model of the controlled process according to status of occurrence and influence. 

Therefore, at the description of controlled process behaviour the sets of states, inputs and 
outputs of the process should be divided into correct subset (correct in defined time) and 
failure subset [Balažovičová, 2002]. 

From the operational environment point of view, every failure form of the transition and 
output functions is potentially dangerous. Thus, rate R goes towards value of accident 
probability of the operational environment. Whether dysfunction of the controlled process 
causes accident or not, depends on instantaneous operative conditions of the operational 
environment. 

To summarise, they are two parallel random processes, in which mutual interaction are 
determining in case of accident occurrence. For example, incorrect result of the railway track 
circuit state monitoring does not cause railway accident while the train appears in observed 
section. 



 

3 SAFETY-RELATED CRITICAL PROCESS MONITORING 

Process monitoring is an action of gaining real images about the selected process features. 
The monitoring system is a complex of technological and software tools, which allow 
monitoring. 
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Fig. 2 Model of the safety-related critical process monitoring 

Let safety-related critical process be a monitored object Fig. 2 with finite number of defined 
states { }S . Process monitoring can be described with transformation MYYM →: , 

εεε MYYM →: , where { }YY ∈  are the output process variables of the monitored 

process, M  is a correct transformation, executed by monitoring subsystem, εM  is an 
incorrect transformation under interference influence ε . As a consequent, correct variable 

{ }YY ∈  is noticed by observer as an image { }YY M ∈
ε

. 

Exact regulation or exact control in closed loop can be achieved only with following qualified 
monitoring, i.e., which provides real images about the controlled process state with adequate 
credibility. Firstly, state decomposition of the control system and controlled process is 
needed. 

4 STATE DECOMPOSITION OF THE CRITICAL PROCESSES 

Let { }S  be a state space of the safety-related critical process and contains E states according 

to Fig. 3: { } { } { } { }margin
K SSSS ∪∪= ε , where { } ( )k

K SSSS ,...,, 21=  is a subset of all correct 

(failure-free) states, { } ( )ekk SSSS ,...,, 21 ++=ε  is a subset of all considered failure states, 
{ } ( )Eeemargin SSSS ,...,, 21 ++=  is a subset of states irrelevant to the control function. Subset 

{ }KS  includes states, which are from the control safety point of view critical (menace rate of 
the operational environment is not negligible) and states, which can be integrate to the group 
of safety, non-hazardous states. There is an assumption, that all states from the subset { }εS  
are potentially dangerous. The control system is in charge to generate commands that 
minimise the risk. 

The control system that is in observer-role (Fig. 2) generates control variables based on 
obtained state-images and corresponding control algorithm. For detailed behaviour 
description, finite set of state-images { }T  has to be defined. The elements of this set are 
images of the instantaneous state from set { }S  of the controlled process, obtained by 
transformation: 

( ) ( ),tYT:tT ×     (1) 
where T is an composition algorithm ( ) ( )tTtY → . The elements of the set { }Y  are in practice 
represented by measurement of the physical variables of the controlled process. They are 
electrical variables. The set of state-images { }T  consists of subset TK correct and subset Tε 
incorrect images:  
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The definition of the set of state-images { }T , which are observed by the observer, results in 
conditions, under which deformation of the actual state perception can occur. Observer has to 
provide to the control system qualified estimation of the actual process state. During the 
conventional monitoring, this estimation is discrete and can be incorrect. Fuzzy logic 
principles allow quantifying estimation credibility by state pseudo-partition [Balažovičová, 
2002]. 
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Fig. 3 Creation of the state-images and hypotheses setting 

Successful monitoring of the safety-related critical process requires solutions to the following 
problems: 

1. to set the hypotheses relevant to particular kind of process risk and its control 
algorithm, 

2. to quantify the degree of coincidence between the hypotheses and safety-related 
critical process real state, 

3. to define threshold values of the hypotheses credibility accepted by control system. 

Multicriterial control of the safety-related critical process differs from the conventional 
control mainly by algorithms based on set hypotheses about the process state relevant to 
particular kind of risk. 



 

5 HYPOTHESES SETTING 

Let 0,,,,,, SSYX OE αδε  be a description of monitored non-deterministic continuous 
process [Balažovičová, 2002]. Let S be a finite and discrete state space. Observer evaluates 
the instantaneous state of the process by scanned physical variables ( )nyyy ,...,, 21 . In ideal 

case, real state ( )i
n

ii
i yyyS ,...,, 21  has been perceived as K

i TT ∈ , ii ST ≡ . Due to stressors and 
failures mentioned above and process dynamics, deformation of the state perceiving could be 
occurred: iji TTS ≠→ . Providing safety-related CP, it is important to ensure that incorrect 
perceived state does not belong to set of regular states TK. Incorrect perception can be 
detected only if εTT j ∈ .  

S1

Transition
State

S2

S3

S5

S4

Failure
State

Stabile
State

Stabile
State

Transition
State

 

Fig. 4 State decomposition of the safety-related CP 

The set of hypotheses { }521 ,...,, HHHH =  about the actual state of the safety-related CP 
consists of following hypotheses: 

( ) ( ) 11 : StTtH i = , 

( ) ( ) 22 : StTtH i = , 

( ) ( ) 33 : StTtH i = ,         (3) 

( ) ( ) 44 : StTtH i = , 

( ) ( ) 55 : StTtH i = . 

The mission for the safety-related CP observer is to create the state model of the CP, which is 
involved not only all expected process states, but also algorithm images of all transition 
among states. Example of the state decomposition of the simple two-state safety-related CP is 
depicted in Fig. 4. To ensure achieving credible information for control system, there has to 
be decided, which hypothesis is true in time t. Inasmuch as criterions for hypothesis 
evaluation are based on static and dynamic analysis of measured physical variables, it is 
obvious that this evaluation can not be crisp. It will depend not only on evaluation of absolute 
values and gradients of state variables, but also on sequence features of safety-related CP. 
Multicriterial fuzzy decision making is considered as a suitable method. 

Hypotheses are the set of statements about the instantaneous state of the controlled process. 
They are set to the state-images that represent state of the controlled process relevant to 
control algorithm. 



 

Let set M hypotheses about the instantaneous state of the monitored process with S states 
EM ≤ . The hypotheses about the marginal states of the controlled process are not needful for 

the control algorithm, then eM ≤ . About the k correct process state m hypotheses could be 
set, km ≤ . Similarly, about the ( )ke − failure process state ( )mM − hypotheses could be 
set, ( ) ( )kemM −≤− , see Fig. 3. 

The observer creates the set of state-images { }T  following process variables 
{ } ( )pyyyY ,...,, 21= . Process variables are the systems of input variables which are used for 

creating the rules for state-images eTTT ,...,, 21  and coupled with integro-differential 
functions ( ) ( ) ( )pyyy ψψψ ,...,, 21  compose a extended systems of input variables. Hypothesis 

hH  can be set only according to the assignment: 

( ) ( ) ( )( )
gTppg

gh

yyyyyyT

egMhTH

ψψψ ,,...,,...,,:

where,,...,2,1,,...,2,1,:

2121

==
,  (4) 

where ψ  is an integro-differential function for computing the gradient and median of the 
continuous process variables. e  is a overall number of correct and failure process state, Fig. 
3. Assignment ( ) ( ) ( )( ) egyyyyyyT

gTppg ,...,2,1,,...,,,...,,: 2121 =ψψψ  is defined by fuzzy 

partition. Fuzzy partition creates domains divided into essential number of subspaces. Using 
fuzzy partition of the extended system of input variables, finite number of subspaces 

Aaa ,...,2,1, =η  is formed: 

( ) ( ) ( ) ( )ppa yyyyyy ψψψ ~,...,~,~~,...,~,~
2121=η ,  (5) 
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Domains ABBbb ≤=ℵ ;,...,2,1,  are developed by combination of subspaces see Fig. 5: 
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Subspaces creating the particular domains must be conjunctive. 
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Fig. 5 Example of the subspaces and domains of the extended process variables 

The image of the monitored process state is defined by fuzzy partition of the extended system 
of the process variables with one following method: 



 

1. One state image bT  is allocated to every domain ABBbb ≤=ℵ ;,...,2,1,  i.e. 
BbT bb ,...,2,1,: =ℵ . Example: 54332111 :;: ηηηη ∪≡ℵ∪≡ℵ TT  in Fig. 5. 

2. If the domain is created with exactly one subspace, then to every subspace 
Aaa ,...,2,1, =η  one state-image will be assigned aT , i.e. AaT aa ,...,2,1,: =η . 

Example: 322 : η≡ℵT  in Fig. 5. 

3. Combination of the methods ad 1) and ad 2). 

Let state-images ejiTT ji ,...,2,1,where,, =  are set to domains 
21

, bb ℵℵ , where 

Bbb ,...,2,1, 21 = , which are creating an adjacent segment of the domain chain. If 
21 bb ℵ⊂ℵ  

or 
12 bb ℵ⊂ℵ , for example 32,ℵℵ  in Fig. 5, then these state-images are non-crisp. If the 

domains meet each other in one point, then state-images are crisp (Fig. 5). To ensure for 
control system to obtain credible information, there is a necessity to decide which hypotheses 
is true in selected time t. Some methods for this hypotheses evaluation are presented in 
[Balažovičová, 2002]. Criteria for hypotheses evaluation are based on static and dynamic 
analysis of the measured physical variables. Their evaluation could neither binary nor unique. 
This evaluation depends not only on evaluation of absolute values and gradients of state 
variables but also on sequence features of the safety-related critical processes. Multicriterial 
fuzzy decision making is considered as a suitable method [HONG, 2000]. 

Let { }mHHHH ,...,, 21=  be a set of hypotheses and let { }n21 C,...,C,CC =  be a set of 
criteria. Assume that the characteristics of the hypotheses Hi are represented by the vague set  

[ ]( ) [ ]( ) [ ]( ){ },1,,,...,1,,,1,, 222111 ininniiiii ftCftCftCH −−−=  where ijt  indicates the degree 

to which the hypothesis iH  satisfies criteria jC , ijf  indicates the degree to which the 

hypothesis iH  does not satisfy criteria jC , [ ]1,0tij ∈ , [ ]1,0fij ∈ , 

mi1   and   ,1   ,1 ≤≤≤≤≤+ njft ijij . 

Let mi1  andn   j1  where,1 ≤≤≤≤=− ∗
ijij tf . In this case, iH  can be written as: 

[ ]( ) [ ]( ) [ ]( ){ }**
222

*
111 ,,,...,,,,,, ininniiiii ttCttCttCH = , where mi1 ≤≤ .  (7) 

Assume that there is a decision-maker who wants to choose a hypothesis which satisfies the 
criteria pkj CCC ,...,,  or which satisfies the criteria sC . This decision-maker’s requirement is 

represented by the following expression spkj C OR C AND ... AND C AND C . 

In this case, the degrees to which the hypothesis iH  satisfies and does not satisfy the 
decision-maker‘s requirement can be measured by the evaluation function E: 
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where ∧  and ∨  denote the minimum operator and the maximum operator of the vague 
values, respectively; ( )  iHE  is a vague value, mi1 ≤≤ , and 

( )( )isipikijHi ttttt ,,...,,minmax= ,        ( )( )***** ,,...,,minmax isipikijHi ttttt = .  (9) 



 

Definition 1: Let [ ]xx f1,tx −=  be a vague value, where [ ]1,0t x ∈ , [ ]1,0f x ∈ , 1ft xx ≤+ . 
The score of x can be evaluated by the score function Æ  shown as follows: 

( ) xx ftx −=Æ ,    (10) 
where ( ) [ ]1,1Æ +−=x . 

Based on the score function Æ, the degree of suitability to which the hypothesis iH  satisfies 
the decision-maker’s requirement can be measured as follows: 

( )( ) 1Æ * −+=
ii HHi ttHE   (11) 

where ( )( ) [ ]1,1Æ +−∈iHE . The larger the value of ( )( )iHEÆ  the more the suitability to 
which the hypothesis iH  satisfies the decision-maker’s requirements, where mi ≤≤1 . 

Let ( )( ) 11Æ pHE = , ( )( ) 22Æ pHE = ,....., ( )( ) mm pHE =Æ . If ( )( ) ii pHE =Æ  and ip  is the 
largest value among the values m21 p,...,p,p , then the hypothesis iH  is his best choice. 

The correct setting and objective evaluation of the hypotheses about the actual state of 
controlled safety-related CP is a requisite condition for precise and safety control. Select 
package of hypotheses H needs to be optimal not only from number of the expected 
operative-states point of view, but also from operative condition among them. Therefore, it 
must go out from substantial behavioural analysis of the controlled process. For example, the 
package of hypotheses (4) set at state diagram in Fig. 4 would be sequential insufficient, if 
transition ( ) 321 SSS →→  was not finished (because of some operative reason) and state 1S  
was the target state. The existence of the absorbing failure-state ( 5S  in Fig. 4) is another 
condition for correct setting of the hypotheses about the actual state of the safety-related CP. 

The method for hypotheses evaluation determines the hypotheses credibility ( )( )iHEÆ  in 
extreme sense: if ( )( ) 1Æ0 << iHE , then hypothesis credibility is [ ]1,0∈iH , and vice-versa , 
if ( )( ) 0Æ1 <<− iHE , then hypothesis non-credibility is [ ]1,0∈iH . 

For hypotheses evaluation about the actual state of safety-related CP, there can be used either 
a less sensitive formulation of the credibility ( ) [ ]1,0∈iHV , which bound of the non-
credibility is ( ) 0=iHV  and represents only values ( )( ) 0Æ ≥iHE : 

( ) ( )( ) ( )( )
( )( ) 0Æ1if,0

1Æ0if,Æ
<<−

<<
=

i

ii
i HE

HEHE
HV , ni ,...,1= ,   (12) 

or a more sensitive formulation which bound of the non-credibility is ( ) 5,0=iHV : 

( ) ( )( )( )1Æ.5,0 += ii HEHV .  (13) 
In control system, the selection of the most credible hypothesis is performed by next two 
approaches: 

a) relative selection – at safety-related non-critical states: 

( ) ( )( )iHVjHVjopt HH
max=

= , ni ,...,1= ;  (14) 

b) absolute selection – at safety-related critical states: 

( ) ( )( )

( ) ik   ,min

minmax

:
≠<

>=

∈
〈=

ViHV

ViHVjHV

TTH

H
H

kk

j
opt ε

, i=1,...,n.  (15) 



 

An estimation of the minimal hypothesis credibility value minV , which is still accepted by 
control system, is noticeable. This is an assignment ( ) [ ]1,0min ∈→ ii HVH , while threshold 
value ( )miniHV  of the safety-related relevant hypotheses (i.e. hypotheses about the actual 

state K
i SS ∈ , which is safety-related critical) is higher than the threshold value ( )minjHV  

of the hypotheses about the actual state ijSS K
j ≠∈ , , which is non-critical. In extreme 

cases, ( ) 1min =iHV  may be required. In this situation, control safety rate determined by the 
input credibility is high, but generally to the prejudice of control reliability. 

Function analysis of the conventional control of the critical processes assumes the control 
algorithm decomposition to the elementary safe control function B

if . For the control 
optimisation of the system with goal-oriented behaviour it is necessary to choose tools for the 
description, modelling and model analysis which are enable increasing the control precision. 
For the safety-related critical processes these tools have to ensure multicriterial control. It 
could be expected that equation is changing into: 

( ) ( ) ( ) ( ) ( ) ( )[ ] B
immnnnnnn fthenBcBcBcVcVcVcif ,...,,|,...,, 22112211 ++++ ,  (16) 

where ( )jj Vc , nj ,...,2,1=  are the technological control conditions completed with weight 
information about their plausibility and ( )kk Bc , mnnk ,...,2,1 ++=  are interlocking 
(protective) conditions completed with weight information about their safety rate. 

6 CONCLUSION 

Fuzzy set theory application for the safety-related critical process controlling allows 
quantifying the credibility of the information accessed to the control algorithm. The method 
for the safety-related critical process controlling based on fuzzy decision making mentioned 
in this paper exploits a new approach for the monitoring of the safety-related critical process 
attributes. This method is based on hypotheses setting and their evaluation. The method can 
be described and summarised as in Fig. 7. 
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Fig. 7 Spracovanie procesných veličín pozorovateľom 

The information about the safety-related critical process obtained with the mentioned method 
is above standard compared with conventional method. According to the parallel evaluation 
of these hypotheses, the information is also redundant. 

The aim of the optimal controlling of the safety-related critical processes is to achieve its high 
quality. The quality criteria are reliability, safety and control precise. The optimal control also 
minimises the human factor influences, but according to the quality it does not take any 
responsibilities from human factor. 
This work has been supported by the Grant Agency of the Slovak Republic VEGA, grant No. 1/8261/01 „The 
Use of Artificial Intelligence for Critical Processes Controlling“. 
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