
ADVCONTR Kopčok, K. I. 61

Statecharts and Ladder Logic Diagrams in Control of Industrial
Processes

Kristijan-Igor Kopčok,
Dipl. Ing. Dept. of Automatic Control Systems, Faculty of Electrical Engineering and
Information Technology, Slovak University of Technology Ilkovičova 3, 812 19
Bratislava, Slovakia �kopcok@kasr.elf.stuba.sk

1. Abstract
The logic controller is a supervisory system which controls parallel and

synchronized sequences of elementary operations in the controlled system. Even though
logic controllers are very important in the process of control in the industry, there is not yet
a standard integrated tool, which is sufficiently powerful, versatile and simple to use, and
with which it is possible to carry out formal analysis of correctness. In this paper we will
present statecharts as tool for modeling and control design of industrial processes, their
analysis method and their transformation into ladder logic i.e. the language of
programmable logic controllers.

Keywords: statecharts, reachability tree, ladder logic, programmable logic controler.

2. Statecharts
Statecharts are extension of classical state machines. Their main advantage is the

fact that they enable more simple specification and design of discrete event systems than
other tools like for example Petri nets. Statecharts are modular and expressive i.e. it is
possible to describe complex behavior of the system with relatively simple statechart.
Formal definition of statecharts is given in Definition 1.

Definition 1: Statechart M is a 8-tuple M = (Q, I, EV, S, O, λ, ξ, α) where

Q is the global set of states;

I is teh set of transitions (names of transitions);

EV is the set of events to which statechart should react;

S ∈ Q is the default input state;

O is the set of generated operations or events;

λ: Q×I×EV → Q×O is the next state function;

ξ: Q → Q is the XOR hierarchical state function;

α: Q → Q is the AND hierarchical state function;

It is an oriented chart in which nodes are called states and arcs are called
transitions. Example of the simple statechart with it’s basic elements is shown in Fig. 1. In
this figure it can be seen that states (at any level of the hierarchical structure) are
represented with round squares (Fig. 1. states A, B, C) and transitions are represented with
oriented arcs. In general, arc can start and end at any level of the hierarchical structure.
Every arc is labeled with event e.g. with event’s name (Fig. 1. α, β, δ) or with it’s name
and the condition in parentheses. (Fig. 1. γ(P)). System can be in state A, B or C. This

ADVCONTR Kopčok, K. I. 62

depends from occurrence of events α, β, δ. For example, if system is in state B and event
α occurs system will change it state to A.

C

B

 β

 α
A

 γ(P)

 δ

 β

Fig. 1. Example of statechart

Two types of hierarchy e.g. decomposition are considered to make statechart:

- XOR decomposition

- AND decomposition

2.1. XOR decomposition
This decomposition means that a state at one level of the hierarchy corresponds to

a state in the previous level in the same hierarchy. We can see example of XOR
decomposition in Fig. 2. it can bee seen in this figure that event β transfers the system into
the state B weather it is in the state A or state C at the moment of event occurrence.
Considering this fact we can cluster states A and C into a new super-state D and replace
two arcs β by one, as it is in Fig. 2. State D is the exclusive OR of A and C i.e. to be in
state D system must be either in state A or in C, and not in both.

C

B β

 αA

 γ(P)

 δ

D

Fig. 2. . XOR refinement e.g. superstate

Another interesting statecharts elements are default state and history or H block.
Default state is the solution for the problem of the initial state activation. It determinates
which state will be active when system enters into superstate unless otherwise specified.
Graphical representation of default state is as an oriented arc with a black dot and it is
given Fig. 3.

ADVCONTR Kopčok, K. I. 63

A
D

A

D

Fig. 3. Graphical representation of default state

History block allows entering a group of states by the system’s history i.e. it will
enter the state most recently visited.. History is applied only on the level in which it
appears. Graphical representation of this block is by H in a circle as it is shown in Fig. 4.
According to this figure case (a), when event α occurs system enters into superstate B. As
the states C and D are components of this superstate and there is a history block, system
will enter into state that was active for the last time of superstate B activation or into state
C if it enters into B for the first time.

α
B

C

D

H
C

D
E

F

K

G

HA

B

 (a) (b)

Fig. 5. Examples of H block

2.2. AND decomposition
This decomposition means that a state at one level corresponds to a fixed number of

parallel states in the next level of the same hierarchy. Graphical representation of such
state is the physical splitting of a box into components using dashed lines.

In Fig. 6. we can see a state Y consisting of AND components A and D, with the
property that being in Y entails being in some combination B or C with E, F or G. We say
that Y is the orthogonal product of A and D. The components A and D are no different
conceptually from any other superstates.

A

B

C

D

E

G

F

 µ

 α

α

 β
(v G) γ δ

Y

Fig.6.. AND decomposition or orthogonality

ADVCONTR Kopčok, K. I. 64

The same system but without AND decomposition is shown in Fig. 7. We can see
that Fig. 7. contains 6 states because there are three and two states in components shown in
Fig. 6. In case of two components with one thousand states each the result would be one
million states.

 δ

 δ

 γ

γ

 µ

 µ

 β α

 α

 α α

B, F
B, G

C, G
C, F

C, E

B, E

Fig. 7.. Statechart in Fig. 6. without AND decomposition

2.3. Temporal logic in statecharts
We can use temporal logic in conditions that are specifying system behavior in the

past. For simple cases H block can solve this problem but for more complex problems we
must use temporal logic. For example if we add following expression of temporal logic as
a condition to a transition

(¬(in A)∧ ¬(in B)) since (D)

means that the state to which such transition leads will be activated only if
sometimes in the past state D was activated and states A and B were never activated.

2.4. Actions and activities
Statecharts represents control part of system that is in charge of generating

decisions and in that way influence behavior of the system. This property is secured
through actions and activities. The action is split-second happening that take ideally zero
time. An activity always takes a nonzero amount of time.

If we want a transition labeled a in one component of statechart to trigger another
transition in an orthogonal component, without necessarily having any immediate external
effects, we can simply label firs α/S and the second with S. Upon sensing a the first
transition will be taken and the action S will be carried out, generating S as an event that
can be sensed elsewhere. In the other component the S transition will be taken
instantaneously. In Fig. 8. we can see examples of actions and activities.

entry S
exit β, T
throught X

 β γ /W

A

E

 α C

entry V

B

F

D

entry U

Fig. 8. Example of actions and activities

ADVCONTR Kopčok, K. I. 65

3. Reachability tree for statecharts
The construction if the reachability tree considers every possible computation

sequence for the statechart. At each step we suppose that the event expression evaluates to
true thus leading to a new configuration. Conditions are included in the event expressions
and are also considered when firing a transition. Fig 9. Illustrates a statechart specifying
the problem of two processes sharing two resources. Two processes run concurrently and
this is modeled by the AND state P1×P2. P1 and P2 are XOR states as they may be in only
one of their three basic states. In Fig. 10. we can see the reachability tree for statechart
shown in Fig. 9.

Idle 1

Using R1 Using R2

Using R1R2

e1[(¬in(Using R2R1))] e4[(¬in(Using R1R2))]

e2[(¬in(Using R2))]

Idle 2

Using R2R1

e5[(¬in(Using R1))]

e3 e6

P1 P2

P1×P2

Fig. 9. Example of two processes and two resources

C = [(Idle1, Using R1, Using R1R2), (Idle2, Using R2, Using R2R)]

[(1, 0, 0), (0, 1, 0)]2

[(1, 0, 0), (1, 0, 0)]0

[(0, 1, 0), (1, 0, 0)]1

[(1, 0, 0), (0, 0, 1)]6[(0, 0, 1), (1, 0, 0)]3 [(0, 1, 0), (0, 1, 0)]4 [(0, 1, 0), (0, 1, 0)]5

[(1, 0, 0), (1, 0, 0)]

Fig. 10. Reachability tree for statechart form Fig. 9.

3.1. Dynamic properties verified through the reachability tree
Valid sequence of events: A sequence of event expressions is valid if each event

may cause a transition to fire yielding a configuration change.

Reachability: A state configuration Ck is reachable from another state configuration
Ci if there is at least one valid sequence of events s1, s2,, sn and a set of intermediate
state configurations {Ci, Ci+1,, Ci+n} such that Ci → Ci+1 → Ci+2 → Ci+n = Ck. The state
configuration Ci may be the statechart’s initial state configuration or any other
configuration.

Reinitiability: A statechart is reinitiable when for each state configuration Ci
reached from initial configuration C0, there is a sequence of events that leads back to C0.

Deadlock: A statechart has a deadlock if its execution may reach a state
configuration in which progress can not be made, because no transition is able to fire.

Usage of transitions: A transition is used if it appears in at least one execution path
of its statechart.

s1 s2 sn

ADVCONTR Kopčok, K. I. 66

4. Transformation of statecharts to Ladder logic
After creating and analysing a statechart model we can perform its transformation

to ladder logic. Simple example of this transformation is given in Fig. 11.

A Bα

Fig. 11. Transformation of statecharts to ladder logic

In the ladder logic we can divide every rung of the ladder into two parts. Left part
of ladder contains testing conditions and the right part of ladder contains actions and
activities. If the left part of ladder is evaluated as true than the right part of ladder is
executed.

We will explain transformation using example shown in Fig. 11. Statechart that we
will transform has two states A and B and one transition activated with event α. In the
ladder logic we will use internal binary variabiles to indicate the state of the statechart
states and physical inputs will test the occurrence of the external events. In this example
state A will be represented with variable B3:0/3, state B will be represented with variable
B3:0/4 and event α will be represented with input signal I1:1/4.

In the left part of ladder we are testing wether state A and event α are active and
state B is not active. If this condition is fulfill State A will be deactivated and state B will
be activated.

5. References
[1] Harel, D.: Statecharts: A Visual Formalism for Complex System. Science of Computer

Programing, Vol 8, pp. 231-274, 1987.

[2] Berio, G., Vernadat, F. B.: Formal Foundation for a Process/Resource Approach in
Manufacturing Systems Behavior Modelling. 14th Triennal World Congress of IFAC,
Bejing, P. R. China, 1999.

[3] Masiero, P. C., Maldonado, J. C., Boaventura, I. G. : A Reachability Tree for
Statecharts and Analysis of Some Properties. Information and Software Technology,
Vol 10, pp. 615-624, 1994.

