
ADVCONTR Hrúz, B. 49

Modeling and Control of Discrete Event Systems in Practice

Branislav Hrúz,
Dipl. Ing., PhD., Associate Professor
 Dept. of Automatic Control Systems, Faculty of
Electrical Engineering and Information Technology, Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava, Slovakia �hruz@kasr.elf.stuba.sk

1. Abstract
Two specification tools for the discrete event dynamic systems (DEDS) are described

in the paper. The first one is the finite automaton which represents the basic finite state
machine from which many other tools are derived. The second and very often used nowadays
is Petri net. Both tools are analyzed, compared and used for the DEDS control. Their use is
illustrated on an practical example.

Keywords: discrete event dynamic systems, finite automata, Petri nets.

2. Introduction
An important group of the man-made systems can be characterized as the discrete

event dynamic systems – DEDS. As always, understanding, creation and governing of such
systems requires to find out an adequate systems description and specification, in other words,
to find the system model. The basic property of the DEDS is that they are the event-driven
systems in comparison with the time-driven systems. The event relations in DEDS can be very
complicated ones. Think of the event synchronization, concurrency, mutual exclusion,
conflicts etc. in such systems like flexible robotic manufacturing systems, air or surface
transportation systems with ticket reservation, telecommunication systems, computer networks
etc.

Having a model of the discrete event dynamic system the design of its control is
possible. The control specification model is mostly of the same kind as the model of the
controlled DEDS. Whatever the approach to the control specification can be, finally the
control program must be written and implemented in a suitable hardware means. The
programmable logic controllers are such widespread and reasonable means.

3. Finite automata in the DEDS control
The model abstractions used for the DEDS are based on the assumption that the

number of the system states is finite and that the system transitions occur in the discrete time
points. The finite automata served for several decades as the DEDS models. What makes them
such a powerful model of DEDS is that they are effectively incorporating two basic system
categories, namely the state and the transition. The finite automata are described in detail e.g.
in the book by Carrol and Long (1989).

To illustrate the use of the finite automata let us consider an example. A system
consisting of three pneumatic pistons A, B, C executing sequences of movements is depicted
in Fig. 1. The pistons are operated by the electric solenoid valves. The pistons stop only in the
end positions. Each piston has two limit sensors indicating the piston end positions. SA1 is the

ADVCONTR Hrúz, B. 50

sensor for the basic position and SA2 for the pushed out position of the piston A. Analogously

are denoted the sensors for the other pistons.















=

C

B

A

w
w
w

w is the vector control variable, its value
















=

0
0
1

w will be denoted as 100w , and analogously for other values. If RF†�� valve AV is set

so that piston A moves to the right end position, if 0=Aw the piston moves back to the end
position.

The variables associated with the position sensors can be treated as logical variables, as
well. Value 11 =a means that piston A is in the basic position that is left in Fig. 1. Value

01 =a means inversely that piston A is not in the basic position. Similarly it is for the other
variables.

A SA1 SA2

a1 a2
wA

B SB1 SB2

b1 b2
wB

C SC1 SC2

c1 c2
wC

Fig. 1. Electro-pneumatic system with three pistons.

ADVCONTR Hrúz, B. 51

Various movement sequences can be programmed on the described piston systems. As
an example let a sequence be

{ } { }−−++−+= CBCBAASTARTS ,,,,,, (1)

where +A represents that the piston has to do the forward stroke and −A represents
the return one. Expression { }++− CBA ,, represents three concurrent actions to take place
simultaneously.

 We could specify the system behavior from the point of view of an observer with help
of the finite automaton. Instead we will pass directly to the system control specification using
the finite automaton as illustrated in Fig. 2. Compare Fig. 2 with the definition of the finite
automaton as follows

 ()0,,,,, qYXQA λδ= (2)

where

Q is the finite set of the states { }1510 ,...,, qqqQ =

X is the finite set of inputs { }212121 ,,,,,, ccbbaaSTARTX =

Y is the finite set of outputs { }000011100 ,, wwwY =

δ is the transition function () QXQ →×:δ , × is the Cartesian product

λ is the output function YQ→:λ

Qq ∈0 is the initial state of the automaton

The isomorphic representation of the above finite automaton is as the drawn ordinary
mathematical directed labeled graph with the nodes Q and the labeled arcs defined by the
function δ with the labels from the set Râ��â�÷&FW&VB��triple ()kji qxq ,, corresponds
to the arc coming out of the state iq going into the state kq and labeled by the input jx .

 The control sequence specified with the automaton ensures the sequence expressed by
(1). The following function of the system is required. After an input START the piston A is
activated. When it arrives at the end position the signal 2a is detected and the automaton
transits from state 1q to state 2q and output 011w is generated. Pistons B and C go
simultaneously forward and A returns back. When both B and C are in the right end position
(state 7q with output 000w when A is not back or state 12q with the same 000w when A is
already back) they are returning back regardless of the position A. When all three pistons are
in the basic position the system returns in the initial state and new START can be triggered.
The speed of the movements are different because of the different load of the pistons. It is
required to follow all combinations of the piston positions and this is enabled by the
automaton model in Fig. 2.

ADVCONTR Hrúz, B. 52

q1/w100q0 q2/w011 q3

q6q5q4

q7/w000

q13
q15

q12/w000

q8

q9 q10 q11

q14

START a1

c2 b2 b2

a2

c2

a1

a1
b2

c2

b1 c1
a1

b2

c2

c1
c1

b1

b1

a1

a1

b1
c1

b1

c1

a1

 Fig. 2. Finite automaton model of the piston system.

4. Petri nets in the DEDS control.
Petri nets represent another powerful tool for the DEDS modeling and control design

(see e.g. Abel, 1990; Zhou, 1995, Hrúz, 1994). They are the finite state machines models alike
the finite automata described in the previous section. The Petri net is defined as follows

()0,,,, MWFTPPN = (3)

where { }npppP ,...,, 21= is a finite set of places

 { }mtttT ,...,, 21= is a finite set of transitions

 () ()PTTPF ×∪×⊆ is the relation defining the arcs

 +→ IFW : is the function that maps the arcs into positive integers called weights, the
weights are labels of the arcs

ADVCONTR Hrúz, B. 53

 N→PM :0 is the function which maps the places into the set of the natural numbers,
this function creates the so called marking of the Petri net, it defines the number of
tokens in each place.

A transition of the Petri net can fire if each pre-place of the transition has so many
tokens as it is the weight of the arc connecting the pre-place with the considered transition.
After firing the tokens according to the weight are removed from each pre-place and so many
tokens are deposited into each post-place what is the weight of the arc from the transition into
the post-place.

 The Petri nets interpreted for control are augmented in comparison with the above
defined ordinary Petri nets so that logical conditions can be associated with a transition and
commands to the system can be associated with a place. The logical conditions represent
additional conditions for the transition firing. The commands are activated when into a place
comes the token.

 Using the Petri net interpreted for control the piston system is modeled in Fig. 3.

p1

p2

p3 p4 p5

The logical variables corresponding to the system variables signaling events are

associated with the transitions. The control variables and their required values are written by
the places. The concurrent processes and synchronization is better transparent in the Petri net
as in the finite automaton model.

ADVCONTR Hrúz, B. 54

5. Conclusion
The approach using the finite automata and Petri nets for the control synthesis of the

DEDS was shown in the paper. The practical aspects of the control design were considered.
Both tools were compared on a practical example. There are other graphical tools based on the
tools described in this paper. Grafcet and statecharts are interesting from the application point
of view.

Grafcet (David and Alla, 1992) was developed from the binary Petri nets for the
practical purposes of the control synthesis. It uses slightly different graphical symbols for the
system entities. Grafcet became the European standard for the specification of the logical
control of the DEDS.

Statecharts (Harel, 1987) have good properties as for the system processes parallelism
and hierarchy.

The specification created by any of the mentioned tools is basis for the system control
programming. It is the next step in the control design. For that purpose can be used the ladder
logic diagrams, instruction list, a real-time programming language, logical blocks or other
modern programming procedure.

6. References.
[1] Abel, D. (1990). Petri-Netze für Ingenieure. Springer-Verlag, Berlin.

[2] Carrol, J, and Darrel Long (1989). Theory of finite automata. Prentice Hall, Englewood
Cliffs.

[3] David, R., and H. Alla (1992). Petri nets and Grafcet. Prentice Hall, New York.

[4] Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8, 231-274.

[5] Hrúz, B. (1994). Discrete event systems modelling and real-time control. Journal of
Electrical Engineering (Elektroetecnický časopis), 45, pp. 363-370.

[6] Zhou, M.C. (1995). Petri nets in flexible and agile automation. Kluwer, Boston.

