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1. Abstract 
Two specification tools for the discrete event dynamic systems (DEDS) are described 

in the paper. The first one is the finite automaton which represents the basic finite state 
machine from which many other tools are derived. The second and  very often used nowadays 
is Petri net. Both tools are analyzed, compared and used for the DEDS control. Their use is 
illustrated on an practical example. 
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2. Introduction 
An important group of the man-made systems can be characterized as the discrete 

event dynamic systems – DEDS. As always, understanding, creation and governing of such 
systems requires to find out an adequate systems description and specification, in other words, 
to find the system model. The basic property of the DEDS is that they are the event-driven 
systems in comparison with the time-driven systems. The event relations in DEDS can be very 
complicated ones. Think of the event synchronization, concurrency, mutual exclusion, 
conflicts etc. in such systems like flexible robotic manufacturing systems, air or surface 
transportation systems with ticket reservation, telecommunication systems, computer networks 
etc. 

Having a model of the discrete event dynamic system the design of its control is 
possible. The control specification model is mostly of the same kind as the model of the 
controlled DEDS. Whatever the approach to the control specification can be, finally the 
control program must be written and implemented in a suitable hardware means. The 
programmable logic controllers are such widespread and reasonable means.  

3. Finite automata in the DEDS control 
The model abstractions used for the DEDS are based on the assumption that the 

number of the system states is finite and that the system transitions occur in the discrete time 
points. The finite automata served for several decades as the DEDS models. What makes them 
such a powerful model of DEDS is that they are effectively incorporating two basic system 
categories, namely the state and the transition. The finite automata are described in detail e.g. 
in the book by Carrol and Long (1989). 

To illustrate the use of the finite automata let us consider an example. A system 
consisting of three pneumatic pistons A, B, C executing sequences of movements is depicted 
in Fig. 1. The pistons are operated by the electric solenoid valves. The pistons stop only in the 
end positions. Each piston has two limit sensors indicating the piston end positions. SA1 is the 
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sensor for the basic position and SA2 for the pushed out position of the piston A. Analogously 

are denoted the sensors for the other pistons. 
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w  is the vector control variable, its value   
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w  will be denoted as 100w , and analogously for other values. If RF†�� valve AV  is set 

so that piston A moves to the right end position, if 0=Aw  the piston moves back to the end 
position. 

The variables associated with the position sensors can be treated as logical variables, as 
well. Value 11 =a  means that piston A is in the basic position that is left in Fig. 1. Value 

01 =a  means inversely that piston A is not in the basic position. Similarly it is for the other 
variables.  

 

A SA1 SA2

a1 a2
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B SB1 SB2

b1 b2
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C SC1 SC2

c1 c2
wC

Fig. 1. Electro-pneumatic system with three pistons.
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Various movement sequences can be programmed on the described piston systems. As 
an example let a sequence be 

{ } { }−−++−+= CBCBAASTARTS ,,,,,,      (1) 

where +A  represents that the piston has to do the forward stroke and −A  represents 
the return one. Expression { }++− CBA ,,  represents three concurrent actions to take place 
simultaneously.  

 We could specify the system behavior from the point of view of an observer with help 
of the finite automaton. Instead we will pass directly to the system control specification using 
the finite automaton as illustrated in Fig. 2. Compare Fig. 2 with the definition of the finite 
automaton as follows 

 ( )0,,,,, qYXQA λδ=        (2) 

where 

Q  is the finite set of the states { }1510 ,...,, qqqQ =  

X is the finite set of inputs { }212121 ,,,,,, ccbbaaSTARTX =  

Y  is the finite set of outputs { }000011100 ,, wwwY =  

δ  is the transition function ( ) QXQ →×:δ , ×  is the Cartesian product 

λ  is the output function YQ→:λ  

Qq ∈0  is the initial state of the automaton 

The isomorphic representation of the above finite automaton is as the drawn ordinary 
mathematical directed labeled graph with the nodes Q  and the labeled arcs defined by the 
function δ with the labels from the set Râ��â�÷&FW&VB��triple ( )kji qxq ,,  corresponds 
to the arc coming out of the state iq  going into the state kq  and labeled by the input jx . 

 The control sequence specified with the automaton ensures the sequence expressed by 
(1). The following function of the system is required. After an input START the piston A is 
activated. When it arrives at the end position the signal 2a  is detected and the automaton 
transits from state 1q  to state 2q  and output 011w  is generated. Pistons B and C go 
simultaneously forward and A returns back. When both B and C are in the right end position 
(state 7q  with output 000w when A is not back or state 12q with the same 000w  when A is 
already back) they are returning back regardless of the position A. When all three pistons are 
in the basic position the system returns in the initial state and new START can be triggered. 
The speed of the movements are different because of the different load of the pistons. It is 
required to follow all combinations of the piston positions and this is enabled by the 
automaton model in Fig. 2. 
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   Fig. 2. Finite automaton model of the piston system. 

4. Petri nets in the DEDS control. 
Petri nets represent another powerful tool for the DEDS modeling and control design 

(see e.g. Abel, 1990; Zhou, 1995, Hrúz, 1994). They are the finite state machines models alike 
the finite automata described in the previous section. The Petri net is defined as follows 

( )0,,,, MWFTPPN =        (3) 

where  { }npppP ,...,, 21=  is a finite set of places 

 { }mtttT ,...,, 21=  is a finite set of transitions 

 ( ) ( )PTTPF ×∪×⊆  is the relation defining the arcs 

 +→ IFW :  is the function that maps the arcs into positive integers called weights, the 
weights are labels of the arcs 
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 N→PM :0  is the function which maps the places into the set of the natural numbers, 
this function creates the so called marking of the Petri net, it defines the number of 
tokens in each place. 

A transition of the Petri net can fire if each pre-place of the transition has so many 
tokens as it is the weight of the arc connecting the pre-place with the considered transition. 
After firing the tokens according to the weight are removed from each pre-place and so many 
tokens are deposited into each post-place what is the weight of the arc from the transition into 
the post-place. 

 The Petri nets interpreted for control are augmented in comparison with the above 
defined ordinary Petri nets so that logical conditions can be associated with a transition and 
commands to the system can be associated with a place. The logical conditions represent 
additional conditions for the transition firing. The commands are activated when into a place 
comes the token. 

 Using the Petri net interpreted for control the piston system is modeled in Fig. 3.  

p1

p2

p3 p4 p5

 
The logical variables corresponding to the system variables signaling events are 

associated with the transitions. The control variables and their required values are written by 
the places. The concurrent processes and synchronization is better transparent in the Petri net 
as in the finite automaton model. 
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5. Conclusion 
The approach using the finite automata and Petri nets for the control synthesis of the 

DEDS was shown in the paper. The practical aspects of the control design were considered. 
Both tools were compared on a practical example. There are other graphical tools based on the 
tools described in this paper. Grafcet and statecharts are interesting from the application point 
of view. 

Grafcet (David and Alla, 1992) was developed from the binary Petri nets for the 
practical purposes of the control synthesis. It uses slightly different graphical symbols for the 
system entities. Grafcet became the European standard for the specification of the logical 
control of the DEDS.  

Statecharts (Harel, 1987) have good properties as for the system processes parallelism 
and hierarchy. 

The specification created by any of the mentioned tools is basis for the system control 
programming. It is the next step in the control design. For that purpose can be used the ladder 
logic diagrams, instruction list, a real-time programming language, logical blocks or other 
modern programming procedure. 
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