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1. Abstract 
The paper describes  genetic algorithms application for control system design and 

for dynamic system model identification. The approach is based on the search for the 
multivariable function global optimum with cost functions which consist of dynamic 
system simulation and integral performance criterion evaluation. The proposed methods 
are demonstrated on design examples of control structures under PID controllers for 
single input – single output (SISO) and multi input – multi output (MIMO) systems as 
well as on an example of a selftuning control structure for a 2x2 system. A real-time 
identification example is presented, too. 

Keywords: dynamic system, control design, system identification, adaptive control, 
genetic algorithms  

2. Introduction 
In the design of control systems there are commonly used mathematical models 

of controlled systems and  controllers. Based on these models, the control system 
parameters use to be designed by means of  analytical approaches with respect to the 
required static and dynamic system behaviour. However, the state-of-the-art of 
computers enables also another way of dynamic systems design which is based on 
computer simulations. In this paper, a optimisation approach is presented which uses 
parametric simulations in connection with genetic algorithms (GA). Due to this 
approach, the task of the optimal design of the dynamic control system is transformed to 
the search for global minimum of a (static) multivariable function. In this paper an 
approach is shown which can be used for dynamic system identification and optimal 
controller parameters design using GA-based optimisation techniques.  

The aim of the control system design consists in guaranteeing the required static 
and dynamic closed-loop behaviour. Usually, this behaviour is represented by means of 
the well-known concepts referred to in the literature: maximum overshoot, settling time, 
damping or using different integral control performance criterions [3,4 and others]. 
Without loss of generality let us consider a simple feedback control loop (Fig. 1) with 
either a PID controller described by the transfer function  SPID(s)=P+I/s+Ds or a PI 
controller having the transfer function SPI(s)=P+I/s,  respectively. The parameters P, I 
and D (proportional, integral and derivative gain) are to be optimised.  
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  Fig. 1. Simple control loop with PID controller  

For the simplicity let us now consider an example with the plant which is 
described by the transfer function 
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                                          (1) 

to be controlled using the PI-controller. The integral control performance 
criterion "Absolute Control Error" (IAE) is considered 

                                               IAE e t dt
T

= ∫ ( )
0

                                                         (2) 

where e is the control error (e=y-w, y-system output, w-setpoint) and T is the 
evaluated time interval. This expression can be evaluated after the dynamic control 
process simulation, in our case in the Matlab/Simulink environment [7] . The goal is to 
find the controller parameters P and I from the bounded intervals (Pmin,Pmax) and (Imin, 
Imax), which guarantee the minimum of the IAE. The graphical representation of this 
control performance criterion for the system (1) represented by the function GIAE=F(P,I) 
is depicted in Fig. 2. Each point of this surface (with the selected step) is the result of 
simulation and the performance criterion evaluation. This simple 2-D search problem 
can be solved also via conventional optimization techniques [5], however, in case of 
more complex control structures with multiple parameters or for controller structures for 
MIMO systems generally a complex n-dimensional optimization problem is considered. 
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Fig. 2. The surface of the IAE criterion for a PI controller with the system (1) 

3. GA-based controller design 
For solving the above mentioned problems the GA-based optimization approach 

has been used [1,2,and others]. The simulated dynamic system may be complex and can 
include different linear or nonlinear parts. The only limitation is the computation time. 

Now, for the illustration, the GA will be applied to the simple PID controller 
design. The space of all possible solutions - sets of the three PID parameters 
("chromosomes") - is (Pmin , Pmax ) x (Imin , Imax ) x (Dmin , Dmax ) which is a subspace of  R3 

. From all possible solutions we have to find the best one from the point of view of the 
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selected performance criterion. An outline of the used genetic algorithm is as follows: 
The first step is the generation (random or by the user) of the start parent population of n 
chromosomes and their fitnes function calculation. Each chromosome represents a string 
{P,I,D}, which consists from the 3 controller parameters: proportional, integral and 
derivative gain. The objective function values, which are called „fitness“are calculated 
for each string using dynamic system simulations and a selected (integral performance) 
criterion, e.g. (2). From the n chromosomes the best b ones are without any change 
moved to the next generation. Next a new „reproduction“ group of n-b chromosomes 
selected either according to their fitness values, or randomly selected, or selected 
combining both methods, etc. are used for crossover and mutation operations. After this 
a new parent population of  (n-b)+b=n chromosomes is completed. This algorithm will 
be repeated unless the fitness function of the best string in some population fulfills the 
predefined condition or until the predefined number of populations is put into life. Fig. 3 
depicts the step responses of the controlled system (1). The responses relate to the best 
chromosomes of the PID controller in the 1st, 10th, 30th, 50th, 70th and the 100th 
population, respectively. A fundamental effect on the dynamic system behaviour has the 
choice of the cost function (control performance criterion). Usage of (2) normally causes 
relatively fast control responses with some small overshoots. If necessary to damp the 
overshoot or the oscillations, it is possible to insert under-integral terms containing 
absolute values of the first or second order control error derivatives 

                                    J e t e t e t dt
T

= + ′ + ′′∫α β γ( ) ( ) ( )
0

                                 (3) 

where α β γ, , are weight coefficients. Good results can be obtained also with the 
criterion  

                                                  J tr= + −αη α( )1                                                    (4) 

where η is the overshoot, tr is the settling time and α  is the weight coefficient. 
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         Fig. 3. Evolution of the PID contoller parameters using GA 

An efficient extension of the cost function leading to non-oscillatory transient 
responses, is the use of a condition which minimizes the number of the step response 
inflexion points. The reference response yr tracking can be achieved via minimization of 
the criterion  

J y t y t dtr= −∫ ( ( ) ( ))2  

The input energy optimization can be carried out using the criterion 

J e t u t dt= + −∫ ( ( ) ( ) ( ))α α2 21  
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where u is the control signal. In the Fig. 4 there are closed-loop responses under a 
PID controller and the system   

S s s
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for which the following criterions have been used: a) IAE (2); b) criterion (3) with 
α β γ= = =3 2 1, , ;  c) IAE extended with the condition of minimum number of inflexion 
points in the step response;  

d) criterion (4) with α = 0 5. . 
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Fig. 4. Step responses using different cost functions 

4. Applications  
The above mentioned GA-based approach can be used for various design tasks. The 

next example deals with the system identification. Consider a linear system which is 
represented by a transfer function S(s)=B(s)/A(s) with the unknown coeficients b0 , b1, … , 
bm  and  a0 , a1,, … , an , which is encoded into the chromosome in the form [b0 , b1, … , bm , 
a0 , a1,, … , an]. For this purpose let us use the standard cost function 

            ∫ −= dttytyJ m
2))()((   

where y is the system output and  ym  is the model output. An example of  GA – 
based identification of a servosystem speed from real-time intut/output data is depicted in 
Fig.5. 
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Fig. 5.GA-based identification of a servosystem 

Both tasks, the identification and the controller design, can be used for construction 
of a selftuning controller. In the next example such an adaptive control structure has been 

model

real 
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used for the control of a two-input two-output system with interactions between the 
subsystems (Fig.6). Beside the linear parts the system contains also saturations and a 
transport delay. After setpoint changes for the PID controllers (Fig.7) in the 1st,  60th or the 
30th and 90th second respectively the systems S11, S21, S12,S22 have been identified and then 
the two PID controllers are designed. Then the new controller parameters are retuned. The 
better control performance after this adaptation process is evident in next setpoint changes. 
For all partial models Sij, the following 2nd order transfer function has been used  
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ij ,       where   i and j are 1 or 2 

The chromosome for the identification has the form 
[b11,1  b11,0   a11,2   a11,1  a11,0 …….. a22,0  τ ] 

 whereτ  is the transport delay of the system S11 . The chromosome contains 17  
parameters. The used cost function in this case is 

( )∫ −+−= dttytytytyJ mm
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where y1m and y2m are model outputs and y1 and y2 are system outputs. The 
chromosome for the two PID controller design is in the form  

[P1 I1 D1 P2 I2 D2] 

 and in the GA-based procedure the following cost function has been used 

( )∫ +=
T

dtteteJ
0

21 )()(  

where e1 and e2  are the control errors for PID1 and PID2, respectively .  

The last example shows the GA approach applied for the parametrization of a 
neuro-PID controller (Fig. 8) in the closed loop with a nonlinear process 

)1(3235 3 yuyyyy +=++′+′′  

which dynamics depens on the working point y. The chromosome consists from 
weights and biases of a three-layer perceptron neural net. The fitness represents the 
evaluation of some of the above-mentioned integral criterions. The closed-loop responses 
are depicted in Fig. 9. 
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Fig. 6. Two input - two output system under the decentralized PID control structure 

f–r�� 7. Adaptation process of the selftuning control structure for the 2x2 system 
 

Fig. 8. Nonlinear neuro-PID controller with a 3-layer perceptron net 

 
Fig. 9. Step responses of  the closed loop with neuro-PID and a nonlinear system 

5. Conclusion  
This paper deals with genetic algorithms-based optimization pocedures used for the 

design of various control system structures with PID controllers, for system identification, 
for selftuning controllers as well as for a neuro-PID controller. This approach based on 
parametric simulations can be used also  for the design of general dynamic systems 
practically without any limitations on their type and number of their inputs and outputs. 
The only limitation is the computation time and the computation effort. The presented 
approach has been successfuly applied in the controller design as well as in system 
identification tasks for linear, nonlinear, stable, unstable, nonminimum-phase systems, 
systems with control action limitations, SISO and MIMO systems, fuzzy systems or neural 
nets as well. 
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